

Quantum Networks and the Role of Classical Networks

Dan Kilper

University of Arizona

November 13, 2020

Funded by the National Science Foundation Grant #1941583

The Quantum Internet

Vision: The foundation for a socially responsible quantum internet which will spur new technology industries and a competitive marketplace of quantum service providers and application developers for the benefit of all

Mission: Develop the first quantum network enabling fully error-corrected, high-speed and long-range quantum connectivity between multiple user groups enabled by quantum repeaters, education pathways for a large and diverse workforce, and a roadmap for the just and equitable deployment of quantum internet technology and its transformative applications

Secure Communications

Quantum Multi-User Applications

Sensing, Timing, GPS

Networked Quantum Computing

Saikat Guha Director

Universities

NORTHERN ARIZONA UNIVERSITY

University of Massachusetts Amherst

Industry

GENERAL DYNAMICS

Raytheon
BBN Technologies

FT

FFRDCs

International Partners

Imperial College London

Incubators

Technology & Entrepreneurship

Education Partners

Why a Quantum Internet?

[fundamentally-powerful] computing

• [provably-secure] communications

[high-resolution] sensing

Quantum-enabled applications that we cannot imagine today

Key Societal Impacts

- Data security and privacy that is "future proof"
 - Promotes national security, personal finance, electronic medical records

- Pattern search and decision making on large distributed data
 - Enables personalized medicine, self-driving cars, accurate weather and financial modeling

- Bringing the power of quantum computing to the masses
 - Democratization of access

Quantum Networks

- Quantum Network that provides shared entanglement, and quantum information transfer to (many) users that is robust to noise, workload dynamics, eavesdroppers, and failures
- Quantum memories or registers are NICs for quantum networks

State of the Art

Two-party entanglement across a single point to point, loss limited connection

Challenges

- Quantum network design entirely different from classical counterpart
- Loss & noise kill quantum entanglement
- Single photons with no equivalent to an amplifier in quantum networks

Quantum Network Services

- Two quantum network services:
 - creation of entanglement
 - transfer of quantum information

Quantum Network Services

- Two quantum network services:
 - creation of entanglement
 - transfer of quantum information

Challenges

- complexity, resource usage, performance
- key factor: how to overcome effects of noise
 - quantum state purification & error correction

Dullaio

Quantum Repeater

The repeaterless bound: rate falls off exponentially with photon transmission probability p~e-kL

M. K. Bhaskar, R. Riedinger, B. Machielse, D. S. Levonian, C. T. Nguyen, E. N. Knall, H. Park, D. Englund, M. Lončar, D. D. Sukachev & M. D. Lukin Nature volume 580, pages 60–64 (2020)
M. Takeoka, S. Guha & M. Wilde, Nature Communications 5 (2014)

Boston p~10⁻⁶ <100 qubits/hour **New York** phia Rate scales exponentially with distance **Atlantic City**

Experimental demonstration of memory-enhanced quantum communication

M. K. Bhaskar, ^{1,*} R. Riedinger, ^{1,*} B. Machielse, ^{1,*} D. S. Levonian, ^{1,*} C. T. Nguyen, ^{1,*} E. N. Knall, ² H. Park, ^{1,3} D. Englund, ⁴ M. Lončar, ² D. D. Sukachev, ¹ and M. D. Lukin^{1,†}

¹Department of Physics, Harvard University, Cambridge, MA 02138

²John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138

³Department of Chemistry and Chemical Biology,

Harvard University, Cambridge, MA 02138, USA

⁴Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA

npj | Quantum Information

www.nature.com/npjqi

ARTICLE OPEN

Routing entanglement in the quantum internet

Mihir Pant^{1,2}, Hari Krovi², Don Towsley³, Leandros Tassiulas⁴, Liang Jiang 6,6, Prithwish Basu⁷, Dirk Englund 6, and Saikat Guha^{2,8}

Diamond Color Center Based Memories

10 μm

Silicon-Vacancy (SiV): good emitter & long spin spin coherence time (~ 10 ms @ 100 mK)

Fiber coupled photonic crystal cavity in diamond: high co-operativity (C= $4g^2/\kappa\gamma$) spin-

photon interface, essential for efficient repeater realization;

Using this platform, we demonstrated:

- Photon number router & single photon switch
 A. Sipahigil, et al, Science, 354, 847 (2016)
- Cavity mediated Interactions between spins

R. Evans, et al, Science, 362, 662 (2018)

- Quantum network node
 - C. Nguyen, et al, arXiv: 1907.13199 (to appear in PRL) (2019)
- Memory enhanced quantum communication

M. Bhaskar, et al, arXiv: 1909.01323 (in review in Nature)

©2020 Center for Quantum Networks

Co-operativity2016: C ~1
2017: C ~ 5
2018: C ~ 20
2019: C ~ 130

Many Repeater Technologies

- Superconducting Qubits
- Trapped Ions
- Color Centers
- Neutral Atoms
- All-Photonic
- Others...

Jungsang Kim, Duke, IonQ

Extensible quantum networks require error mitigation

Error correction in today's internet

Approaches to be explored for the NSF CQN:

- Entanglement purification
- Quantum error correction

Basic Repeater Link Unit

- Single hop link, QM's are essentially small quantum computers
- Need to maintain equal propagation times to interfere photons at Heralding node
- Need ns speed clocking across all nodes
- Single photon, polarization sensitive
 - Many schemes require phase stability/locking
- Fidelity of entanglement depends on losses, memory life, qubits

Building a Quantum Network

- Quantum memories and interface to photon
- Quantum measurements
- Quantum logic on qubits held in memories
- Multi-photon entanglement sources
- Classical computing and communications

Repeater Links

- Single links have low probabilities of success
- Multi-path or cluster states increase success rates

M. Pant, et. al. arXiv:1708.07142v282017 © 2020 Center for Quantum Networks

Multiplexed Repeaters

Seshadreesan et al., "A continuous-variable quantum repeater based on quantum scissors and mode multiplexing", Phys. Rev. Research 2, 013310, March 2020

- Create entanglement between Alice A1 and Bob Bn
- Generate two mode squeezed vacuum states at each node
- Attempt to entangle M states between neighboring nodes
- Use switches to create end to end channel during given clock cycle
 - Nanosecond speeds

Quantum Repeater Control Planes

- 'Link Layer' manages and schedules creation of ebits
- 'Physical Layer' establishes entanglement
- Requires coordination between layers
 - More of a cross-layer,SDN approach

Quantum Network Layers

Application	
Transport	Qubit transmission
Network	Long distance entanglement
Link	Robust entanglement generation
Physical	Attempt entanglement generation

Dahlberg, et. al. ARXIV 1903.09778v1

Van Meter, et. al. ARXIV 0705.4128v2

Quantum-Classical Coexistence

- QKD integrated with classical network using SDN control
 - WDM CV-QKD along with classical signals
 - Used local QKD managers on each node
 - Showed multiple network functions:
 - Quantum secured data plane
 - Quantum secured control plane
 - Quantum secured network function virtualization

V. Martin et al., Center for Computational Simulation and ETSI Informáticos, Telefónica, Huawei, ICTON 2019

Forms of Coexistence

- In-Channel: time multiplexed with classical signals
- In-Band: spectrally muxed in-band (1550 nm) with classical
- Out-of-Band: Separate bands, e.g. 1300nm quantum/1550 nm classical
- Separate fiber: quantum signals in separate fiber
 - Might still share node optical switches and other resources
- Future quantum network coexisting in SCinet?

Conclusions

- State of quantum networks similar to optical networks in 1980's & early 1990's
 - Pre-SONET, no optical amplifiers, lab based optical devices
- Classical networks are to quantum networks what electronic data networks are to optical networks
 - Woven into all aspects of quantum networks
 - Control & coordinate physical hardware
 - Manage and coordinate 'higher layer' operations
 - But, generally not carried over the quantum channels, parallel instead
- Still uncertain layering & control architecture

WWW. CQN-ERC.ORG

INFO@CQN-ERC.ORG