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The Problem: We want the fastest graph processing! Thesis Goals

* High-performance graph processing is very interesting for data science * Quantify performance impact of data dependence
* High-performance computing is increasingly GPU/accelerator based * Model how performance relates to structural properties of the input graph
* Mapping irregular (graph) algorithms to GPU is hard * Predict best parallelisation strategy for a given graph and algorithm
* Performance of irregular algorithms is data-dependent * Create an automated pipeline to repeat this work for new algorithms and parallelisation strategies
Structural Variation Performance Variation Graph Classification? Prediction Feasibility
We have graphs from social networks, road networks, The performance of different parallelisation strategies Graph structure affects performance for most algorithms, For simple algorithms we can use this model as an oracle to
biology. They are different in structure and properties. varies by an order of magnitude or more across graphs. yet there is no consensus on any form of classification select the best performing implementation for a specific graph.
based on structural properties to aid implementation For algorithms whose behaviour Changes at runtime, like BFS,
selection. we can do better. We can keep multiple representations in
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For dynamic computations like BFS, we even see these X graph processing results lets us predict the best performing
huge performance differences between implementation , implementation of an algorithm for a given input graph.
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