
Speeding Up GPU Graph Processing Using Structural Graph Properties
Merijn Verstraaten, Ana Lucia Varbanescu & Cees de Laat

University of Amsterdam

Structural Variation
We have graphs from social networks, road networks,
biology. They are different in structure and properties.

Parallelisation Strategies
Vertex-centric push/pull, edge-centric, Gather-Apply-
Scatter (GAS), virtual warps. Many possible variations of
these, such as using warp and/or block reductions.

Performance Variation
The performance of different parallelisation strategies
varies by an order of magnitude or more across graphs.

Performance Modelling
Can we learn to predict implementation performance from
previously observed results?

Variation Within a Single Run
For dynamic computations like BFS, we even see these
huge performance differences between implementation
across different steps computed on the same graph.

Edge # ≤ 1,743,230

Frontier ≤ 6,786

Avg. Degree ≤ 12

Vertex Push

Max Degree ≤ 20

Min Degree ≤ 1

Vertex Pull

Edge Vertex Push Edge

Edge

The Problem: We want the fastest graph processing!
• High-performance graph processing is very interesting for data science
• High-performance computing is increasingly GPU/accelerator based
• Mapping irregular (graph) algorithms to GPU is hard
• Performance of irregular algorithms is data-dependent

Thesis Goals
• Quantify performance impact of data dependence
• Model how performance relates to structural properties of the input graph
• Predict best parallelisation strategy for a given graph and algorithm
• Create an automated pipeline to repeat this work for new algorithms and parallelisation strategies

17,062,472 639,14311 740.3523,602,831 61

598,870,942 260,379,520 406,41610 631.3

61,572 137.214,869,484 9 1,984,484 15

556.9102,382,410 337,9698 3,023,165 68

62378,142,420 12,150,976 606.47 963,032

48.46 10,72191,497,134 325,729

3,330,225 5 75 139.46,51589,269

20,296 4 21 35.63391,899

93,2573 2,025,594 10,604,552 5 113.4

315.128,093 6,296,894 4,9092 224

Max
Degree

163.3382,219

#E#V
Avg.
Degree

31,076,166 3,9561 79

Standard
Deviation
Degree

Dynamic Algorithms
For dynamic algorithms, where the relevant data changes
over time, such as BFS, this effect is even stronger.

Graph Classification?
Graph structure affects performance for most algorithms,
yet there is no consensus on any form of classification
based on structural properties to aid implementation
selection.

Prediction Feasibility
For simple algorithms we can use this model as an oracle to
select the best performing implementation for a specific graph.
For algorithms whose behaviour changes at runtime, like BFS,
we can do better. We can keep multiple representations in
memory and switch between implementations at runtime for a
classic time-space trade-off.

In Summary
We show that using models trained on previously observed
graph processing results lets us predict the best performing
implementation of an algorithm for a given input graph.

We provide a framework for training such models and are
investigating how much data is required to train an accurate
and portable model for graph algorithms.

BFS Prediction Results

97×

2,671×

Worst

1,048×

38×

236×

9×

Vertex Pull

55%

9%

10%

18.69×

38.62×

Optimal

0%

Algorithm Average

Oracle

15%

27%

23%

3%0% 0%

Predicted

61%

1%

15%

39.66×

>5×

56%

2.22×7%

53%

Push Warp

41%

Vertex Push

2%

Edge list

1–2×

1.40×

1.65×

Results across all KONECT graphs.

Decision Trees

The new BFS is fast!

Prediction works!

Min. BFS Step: 20 ms

Avg. Evaluation: 144 ns (σ = 165 ns)

∼98%Accuracy:

Vertex Push/Pull

parallel for v ∈ Vertices do
 f(v.neighbours)
endfor

Edge-centric

parallel for e ∈ Edges do
 f(e.origin, e.destination)
endfor

Bibliography
[1] J. Kunegis. Konect: The Koblenz Network Collection. In Proceedings of the 22ⁿᵈ International

Conference on World Wide Web, WWW’13 Companion, pages 1343–1350, 2013.

[2] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recursive Model for Graph Mining. In SDM,
volume 4, pages 442–446. SIAM, 2004.

References
Varbanescu, A.L., Verstraaten, M., Penders, A., Sips, H., de Laat, C.: Can Portability Improve
Performance? An Empirical Study of Parallel Graph Analytics. In: ICPE’15 (2015)

M. Verstraaten, A. L. Varbanescu, and C. de Laat. Quantifying the performance impact of graph structure
on neighbour iteration strategies for pagerank. In Euro-Par 2015: Parallel Processing Workshops, pages
528–540. Springer, 2015.

M. Verstraaten, A. L. Varbanescu, and C. de Laat. Using Graph Properties to Speed-up GPU-based Graph
Traversal: A Model-driven Approach. (Under Submission)

https://github.com/merijn/GPU-benchmarks

