X Speeding Up GPU Graph Processing Using Structural Graph Properties

LxJ Merijn Verstraaten, Ana Lucia Varbanescu & Cees de Laat
X University of Amsterdam

X
%)
X

The Problem: We want the fastest graph processing! Thesis Goals

* High-performance graph processing is very interesting for data science * Quantify performance impact of data dependence
* High-performance computing is increasingly GPU/accelerator based * Model how performance relates to structural properties of the input graph
* Mapping irregular (graph) algorithms to GPU is hard * Predict best parallelisation strategy for a given graph and algorithm
* Performance of irregular algorithms is data-dependent * Create an automated pipeline to repeat this work for new algorithms and parallelisation strategies
Structural Variation Performance Variation Graph Classification? Prediction Feasibility
We have graphs from social networks, road networks, The performance of different parallelisation strategies Graph structure affects performance for most algorithms, For simple algorithms we can use this model as an oracle to
biology. They are different in structure and properties. varies by an order of magnitude or more across graphs. yet there is no consensus on any form of classification select the best performing implementation for a specific graph.
based on structural properties to aid implementation For algorithms whose behaviour Changes at runtime, like BFS,
selection. we can do better. We can keep multiple representations in
PageRank on KONECT & R-MAT memory and switch between implementations at runtime for a
27 Edge List IR Pull Warp Push Warp B Vertex Pull B Vertex Push f d Ilo 1 . t. _ ¢ d _ ﬁ.
: Pertormance Mode INg classic time-space trade-off.
RN = Can we learn to predict implementation performance from ¢ g°
2 . P P P BFS Prediction Results
- 2 | previously observed results:
o a—— Algorithm |Optimal| 1-2x >5x|Average| Worst
=] andar : N N N
3 ny 4 gvg. f[\)Aax Deviation Predicted 56%| 41% 1%| 1.40x| 236x
= : oI IHEIEE I Degree Oracle 23% 55% 2%]| 1.65x 9x
1 2 3 4 5 6 7 8 9 10 11 1 382 219! 31.076 166 79 3 956 163.3 Edge list 10% 61% 7%| 2.22x 38x
Graph ’ ’ ’ /
P 2 28,093| 6,296,894 224 4,909 315.1 Vertex Pull 0% 15% 27%| 38.62x| 2,671x
3 2,025,594 10,604,552 5| 93,257 113 .4 Vertex Push 9% 15% 53%| 39.66x| 1,048x
Dynamlc Algorlthms 4 1,899 20,296 21 339 35 6 Push Warp 0% 0% 3%| 18.69x 97 %
A AUHIR For dynamic algorithms, where the relevant data changes 5 89.269| 3,330,225 75| 6,515 139 4 Results across all KONECT graphs.
bt 2 over time, such as BFS, this effect is even stronger. 6 325729 1497134 9| 10721 484 .
! The new BFS is fast!
/7 112,150,976 378,142,420 62(963,032 606.4 *
| 27 @l WOEC T & Rebii 8 | 3,023,165|102,382,410 68|337,969 556.9 BFS Comparison
CZ3 Edgelist NS P:JSh Wirp Vertex Pull - Vertex Push 9 | 084 484] 14.869 484 =l 61570 137 9 ZA4 Gunrock BN Lonestar Non-switching Best EEEE Predicted
Q o‘ / / / / / * - o d o b o)
-E | 101 8,870,942] 260,379,520 59(406,416 631.3 =
- o -
=3 11117,062,472(523,602,831 611639,143 740.3 § _
o ° e
& | | @
Parallelisation Strategies E : s
Vertex-centric push/pull, edge-centric, Gather-Apply- S : S ’
Scatter (GAYS), virtual warps. Many possible variations of T e ‘ ° ‘ ° . od8l [/ :
: : S . 1 2
these, such as using warp and/or block reductions. Graph Decision Trees Graph
[Edge #< 1,743,23OJ In Summary
Variation Within a Slngle Run / \ We show that using models trained on previously observed
))) [Avg. Degree < 12} [Mm Degree < 1J : : .
For dynamic computations like BFS, we even see these X graph processing results lets us predict the best performing
huge performance differences between implementation , implementation of an algorithm for a given input graph.
: [Max Degree < 2OJ[Vertex PullJ [Frontler < 6,786} EdgeJ
across different steps computed on the same graph.
/ \ / \. We provide a framework for training such models and are
Vertex Push/Pull Edge-centric [Vertex PUShJ[EdgeJ [Vertex PUShJ investigating how much data is required to train an accurate
BF> Ferformance Across Levels and portable model for graph algorithms.
. (27 Edge List R Push Warp Vertex Pull EEEE Vertex Push
parallel for v € Vertices do parallel for e € Edges do -
f(v.neighbours) f(e.origin, e.destination) - References
endfOr endf()r O B ° ° Varbanescu, A.L., Verstraaten, M., Penders, A., Sips, H., de Laat, C.: Can Portability Improve
=g ¥ v Pred 1C tl on WO rkS! Performance? An Empirical Study of Parallel Graph Analytics. In: ICPE’15 (2015)
Bibl iography % ; M. Ve.rstraater.l, A. L Varbanes.cu, and C. de Laat. Quantifying the performance irppact of graph structure
{1} J. Kunegis. Konect: The Koblenz Network Collection..In Proceedings of the 22" International o Accuracy: ~98% ;);181_1;:?01.12(}))1;;11;21?;1;);3trategles for pagerank. In Furo-Par 2015: Parallel Processing Workshops, pages
conttrenceon Tond R T 2 OMPTIOn P B0 208 Avg° Evaluation: 144 ns (O- =165 nS) M. Verstraaten, A. L. Varbanescu, and C. de Laat. Using Graph Properties to Speed-up GPU-based Graph
[2] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recursive Model for Graph Mining. In SDM, . raversal: odel-driven roach. (Under Submission
volume 4, pagets 442—446. STAM, 2oo4t. ’ ; Min. BFS Step: 20 ms B t: A Model-d Approach. (Under Sub :

BFS Level https://github.com/merijn/GPU-benchmarks

