Evaluation of virtualization and
traffic filtering methods for container
networks

t ukasz Makowski Cees de Laat Paola Grosso
makowski@uva.nl delaat@uva.nl pgrosso@uva.nl

3 —
& S\- NET
System and Network
UNIVERSITEIT VAN AMSTERDAM Engineering

Our goal: Improving on scientific workloads

e Digital data sharing

e Supporting
multi-organisation
collaboration

Containers - quick recap

Why to use?

e Lightweight (when comparing to a VM)
e Makes application more portable
e Fast startup

Deps

Guest
oS

w
.. :
S
S

/

engine Hypervisor

Linux
host

Container VM
stack stack

Containers - virtual networks

Why do containers need virtual networks?

e Service may consist of groups of containers

e Each group can have tens, hundreds of
them

e Imagine containers are spread across

different hosts...
o Different networks... data-centers... cloud
providers...

It's simply useful to provide a flat network not
bound up with the underlay infrastructure

Research scope

ILA and EVPN:

Addressing
Solution complexity
Usability

Performance
Traffic policies

e)
BGP

...... N J

r \)
ILA VXLAN

\ J J

Traffic
filtering

Distributed
KV store

VXLAN

ILA (ldentifier-Locator Addressing)

e Data-plane: does not use any
encapsulation

“Overloads” IPv6 address to convey
two attributes:

o Locator (where the destination is)
o |dentifier (which container are we
specifically trying to contact)
e Control-plane: not specified
(i.e. Do-It-Yourself)

Version Traffic class Flow label

Payload length Mext header Hop limit

Source address

Destination address

aaaa:0000:0000:0000:2000:0000:0000:0001

\ /

WHERE WHAT

\ /

aaaa:: /64

Container host

ILA (ldentifier-Locator Addressing): SIR prefix

Mobility requirement:
Locator is by definition not mobile.

How the container keep its address?

Solution:
Locator is not exposed to the endpoints (swap it with a virtual prefix:)
SIR prefix Identifier |
Virtual destination
IPv6 address Translation
_______ LA |
______________ mappings|" """ """ " T T T TP TR TR T T
Locator Identifier

destination IPv6

"On-the-wire" |
address

EVPN (Ethernet-VPN)

e Data-plane: VXLAN (other
options possible!) to encapsulate Original Ethernet
packets frame

e Control-plane: MP-BGP
(multiprotocol BGP)

MmO

QOuter MAC Header Outer IP Header Quter UDP Header Original L2 Frame
lff: g;ltea:f:lpﬂunal} ! 20 Byles 1,3 Bytes
] " |) 1
a E 3 - ; o E = E £
TEHR T AMABHE
HERELIE 3 |1a|E%(23| 8 | 238
48 48 16 16 16 72 8 16 32 32 16 16 16 16

http://www.brocade.com/content/html/en/deployment-guide/brocade-vcs-gateway-vmware-dp/GUID-5A5F6C
36-E03C-4CA6-9833-1907DD928842.html

ILA: test environment

SIR prefix: dead:beef::/64

ILA kernel ILA kernel

>
module module
aaaa:./64 o Routable bbbb::/64

IPv6 network
Container host1 Container host2

2001:1111::1/64 2001:2222::2/64

#egress route
dead:beef::0:0:0:2 encap ila bbbb:0:0:0 csum-mode no-action \
via 2001:2222::2/64

#ingress route
2222:0:0:0 encap ila dead:beef:0:0 csum-mode no-action \
via dead:beef::0:0:1/64

*Examples use simplified Identifier addresses

ILA: test environment

e Ingress ILA route conflicted with
kernel generated routes in the
“local” routing table

e Container needs to fill its NDP

table (create NDP proxy or

create static entries)

After the ILA translation, TCP voint | [deadibeeti

header checksum is incorrect®

o In our environment we ended up

1
ethO EErEa K\I‘LA packet
disabling network device offloading

to make the packets through Container host1
e First 4 bits of Identifier are

reserved bits (used for scoping)

*Could be circumvented with ILA’s checksum-neutral
adjustment mode

ILA: Results

e Feasible to be used as a virtual IPv6 container network

e Quite some caveats in regard to data-plane operations

e We did not get to the stage to think about developing a proper
control-plane. All the setup was half-manual

EVPN: test environment

MP-BGP
session

MP-BGP
session

Route server

Network Network
plugin plugin

VXLAN tunnel

Routable
Container host1 Container host2

11.0.0.1 12.0.0.1

12
http://murat1985.github.io/kubernetes/cni/2016/05/15/bagpipe-gobgp.html

EVPN: Results

e Feasible as a container network to create virtual L2 networks

e The main challenge we see is the programmatic integration with
container orchestration systems

e Setup was straightforward: bridging container veth interfaces to
VXLAN adapter

Cilium foreword:
eBPF (extended Berkeley Packet Filter)

Small, limited programs,
executed in-the kernel
space

Can be used to
manipulate and filter
packets

Allow to take shortcuts in
the regular linux kernel
networking stack

Userspace

Source Code LLVM / clang

:
(Verifier + JIT
I—T Ll

add eax, edx add eax, edx
shl eax, 2 shl ea 2

netdevice

TC TC
Ingress Ingress
1
]

..

Kernel

Bytecode

netdevice

i

........

http://cilium.readthedocs.io/en/latest/architecture/

14

Cilium

e Data-plane: VXLAN (or
Geneve) to encapsulate
packets

e Control-plane: distributed KV
store (e.g. Consul)

e Special ingredients:
o eBPF
o container orchestrator plugins
o traffic policies

Bytecode
injection

BPF Program

BPF Program

BPF Program

e e A

BPF Program

Kernel

http://cilium.readthedocs.io/en/latest/architecture/

Overlay filtering topology: Docker Swarm + netfilter

iperf3 -s iperf3 -c <containerl> -t 60

conta! _ Docker Swarm overlay _~" o
nert I Docker Swarm overlay ‘ iner2
10Gbps
Physical server1 Physical server2

Hit by a vast majority

of traffic iptables -t filter -A FORWARD -m state --state

ESTABLISHED ,RELATED -j ACCEPT

iptables -t filter -A FORWARD -m tcp -p tcp --dport 5201
-j ACCEPT

iptables -t filter -P FORWARD DROP

Overlay filtering topology: Cilium + eBPF

iperf3 -s iperf3 -c <containerl> -t 60

Contai . ontai-
ner —\L Cilium overlay ner2

| — |
10Gbps
Physical server1 Physical server2
"endpointSelector”: {"matchLabels":{"id":"servicel"}}, "ingress": [{
"fromEndpoints”: [{"matchLabels":{"id":"servicel"}}
1,
"toPorts": [{
"ports": [{"protocol”: "tcp", "port" : "5201"}]

}]
}

17

Overlay filtering topology: Results

Bandwidth (Gbps)

(8]

In

W

=
|
®
S
7p)
S
@
X
)
o
o

—
(o))
c

=
(<}

=

(1=
@)
c

'

Cilium
(no filtering)

Docker Swarm

Test type

+ filtering

+ filtering

Cilium was more performant
than Docker Swarm (7.22
Gbps vs 8.22 Gbps)

There was no significant
difference after the traffic
filters has been applied (7.20
Gbps, 8.24 Gbps)

Both networks required
manual tuning to achieve
high speeds (MTU increasing,
enabling GRO, GSO, TSO)

18

Overall conclusions

e |ILA offers an alternative to encapsulation based world
o However, it comes at a price of complicated setup and addressing limitations

e EVPN is more flexible in regard to addressing and set-up
o It also has the potential to satisfy more use-cases

e Cilium with its broad use of eBPF outperforms the “classical” kernel-based

network
o Single-flow filtering did not have notable performance impact in tested scenarios

19

Demo at SURF booth (#857)

PoC ILA implementation with extended Berkley Packet Filter (eBPF)

user space

kernel space

network Linux

device —\ hetwork /~
A\ \ \stacky /
o ILA address
g translation
o

a destination

BPF redirect to
interface

X —
&
X
System and Network
UNIVERSITEIT VAN AMSTERDAM Engineering

container

network
device

20

Future work

e Extend tests on Cilium’s performance

e Implement multi-tenancy scenarios for the test-topologies

21

