
Evaluation of virtualization and
traffic filtering methods for container

networks

Łukasz Makowski Cees de Laat Paola Grosso
 makowski@uva.nl delaat@uva.nl pgrosso@uva.nl

Our goal: Improving on scientific workloads

● Digital data sharing

● Supporting
multi-organisation
collaboration

2

Containers - quick recap

Why to use?

● Lightweight (when comparing to a VM)
● Makes application more portable
● Fast startup

3

Linux
host

Container
engine

Deps

App

Linux
host

VM
Hypervisor

Deps

App

Guest
OS

Container
stack

VM
stack

Containers - virtual networks

Why do containers need virtual networks?

● Service may consist of groups of containers
● Each group can have tens, hundreds of

them
● Imagine containers are spread across

different hosts…
○ Different networks… data-centers… cloud

providers...

It’s simply useful to provide a flat network not
bound up with the underlay infrastructure

4

Research scope

ILA and EVPN:

● Addressing
● Solution complexity
● Usability

Cilium:

● Performance
● Traffic policies

5

ILA VXLAN

BGP

VXLAN

Distributed
KV store

Traffic
filtering

ILA (Identifier-Locator Addressing)

● Data-plane: does not use any
encapsulation

“Overloads” IPv6 address to convey
two attributes:

○ Locator (where the destination is)
○ Identifier (which container are we

specifically trying to contact)

● Control-plane: not specified
(i.e. Do-It-Yourself)

6Container host

Contai-
ner
2000::1

aaaa::/64

aaaa:0000:0000:0000:2000:0000:0000:0001

WHERE WHAT

ILA (Identifier-Locator Addressing): SIR prefix

Mobility requirement:

Locator is by definition not mobile.

How the container keep its address?

Solution:

Locator is not exposed to the endpoints (swap it with a virtual prefix: SIR)

7

EVPN (Ethernet-VPN)

● Data-plane: VXLAN (other
options possible!) to encapsulate
packets

● Control-plane: MP-BGP
(multiprotocol BGP)

8
http://www.brocade.com/content/html/en/deployment-guide/brocade-vcs-gateway-vmware-dp/GUID-5A5F6C
36-E03C-4CA6-9833-1907DD928842.html

Original Ethernet
frame

ILA: test environment

9

Container host1 Container host2

Contai-
ner1

Contai
-ner2

SIR prefix: dead:beef::/64

aaaa::/64 bbbb::/64

2001:2222::2/64

Routable
IPv6 network

2001:1111::1/64

dead:beef::1 dead:beef::2

ILA kernel
module

ILA kernel
module

#egress route
dead:beef::0:0:0:2 encap ila bbbb:0:0:0 csum-mode no-action \
via 2001:2222::2/64

#ingress route
aaaa:0:0:0 encap ila dead:beef:0:0 csum-mode no-action \
via dead:beef::0:0:1/64

*Examples use simplified Identifier addresses

ILA: test environment

Container host1

Container1

dead:beef::1veth0

veth1 dead:beef::f

eth0 aaaa::/64
Translate
& route ILA packet

● Ingress ILA route conflicted with
kernel generated routes in the
“local” routing table

● Container needs to fill its NDP
table (create NDP proxy or
create static entries)

● After the ILA translation, TCP
header checksum is incorrect*

○ In our environment we ended up
disabling network device offloading
to make the packets through

● First 4 bits of Identifier are
reserved bits (used for scoping)

*Could be circumvented with ILA’s checksum-neutral
adjustment mode

ILA: Results

● Feasible to be used as a virtual IPv6 container network

● Quite some caveats in regard to data-plane operations

● We did not get to the stage to think about developing a proper
control-plane. All the setup was half-manual

EVPN: test environment

12

Container host1 Container host2

Contai-
ner1

Contai-
ner2VXLAN tunnel

12.0.0.1

Routable
network

11.0.0.1

192.168.1.1 192.168.1.2

Route server

goBGP

Network
plugin

Network
plugin

MP-BGP
session

MP-BGP
session

http://murat1985.github.io/kubernetes/cni/2016/05/15/bagpipe-gobgp.html

EVPN: Results

● Feasible as a container network to create virtual L2 networks

● The main challenge we see is the programmatic integration with
container orchestration systems

● Setup was straightforward: bridging container veth interfaces to
VXLAN adapter

Cilium foreword:
eBPF (extended Berkeley Packet Filter)

14http://cilium.readthedocs.io/en/latest/architecture/

● Small, limited programs,
executed in-the kernel
space

● Can be used to
manipulate and filter
packets

● Allow to take shortcuts in
the regular linux kernel
networking stack

Cilium

15

● Data-plane: VXLAN (or
Geneve) to encapsulate
packets

● Control-plane: distributed KV
store (e.g. Consul)

● Special ingredients:
○ eBPF
○ container orchestrator plugins
○ traffic policies

http://cilium.readthedocs.io/en/latest/architecture/

Overlay filtering topology: Docker Swarm + netfilter

16

Docker Swarm overlay

Physical server1 Physical server2

Contai-
ner1

Contai-
iner2

iperf3 -s iperf3 -c <container1> -t 60

iptables -t filter -A FORWARD -m state --state
ESTABLISHED ,RELATED -j ACCEPT
iptables -t filter -A FORWARD -m tcp -p tcp --dport 5201
-j ACCEPT
iptables -t filter -P FORWARD DROP

Hit by a vast majority
of traffic

10Gbps

Overlay filtering topology: Cilium + eBPF

17

Cilium overlay

Physical server1 Physical server2

Contai-
ner1

Contai-
ner2

iperf3 -s iperf3 -c <container1> -t 60

"endpointSelector": {"matchLabels":{"id":"service1"}}, "ingress": [{
"fromEndpoints": [{"matchLabels":{"id":"service1"}}
],
"toPorts": [{
 "ports": [{"protocol": "tcp", "port" : "5201"}]
 }]
}]

10Gbps

Overlay filtering topology: Results

18

● Cilium was more performant
than Docker Swarm (7.22
Gbps vs 8.22 Gbps)

● There was no significant
difference after the traffic
filters has been applied (7.20
Gbps, 8.24 Gbps)

● Both networks required
manual tuning to achieve
high speeds (MTU increasing,
enabling GRO, GSO, TSO)

D
oc

ke
r S

w
ar

m

(n
o

fil
te

rin
g)

D
oc

ke
r S

w
ar

m
+

fil
te

rin
g

C
ili

um
(n

o
fil

te
rin

g)

C
ili

um
+

fil
te

rin
g

Overall conclusions

19

● ILA offers an alternative to encapsulation based world
○ However, it comes at a price of complicated setup and addressing limitations

● EVPN is more flexible in regard to addressing and set-up
○ It also has the potential to satisfy more use-cases

● Cilium with its broad use of eBPF outperforms the “classical” kernel-based
network

○ Single-flow filtering did not have notable performance impact in tested scenarios

Demo at SURF booth (#857)

20

PoC ILA implementation with extended Berkley Packet Filter (eBPF)

Future work

21

● Extend tests on Cilium’s performance

● Implement multi-tenancy scenarios for the test-topologies

