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Abstract—Resolving distributed attacks benefits
from collaboration between networks. We present three
approaches for the same multi-domain defensive action
that can be applied in such an alliance: 1) Counter-
act Everywhere, 2) Minimise Countermeasures, and
3) Minimise Propagation. First, we provide a formula
to compute efficiency of a defence; then we use this
formula to compute the efficiency of the approaches
under various circumstances. Finally, we discuss how
task execution order and timing influence defence effi-
ciency. Our results show that the Minimise Propagation
approach is the most efficient method when defending
against the chosen attack.
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I. INTRODUCTION

Attacks on computer infrastructures remain a persis-
tent problem on the internet. Resolving these attacks often
benefit from the support and actions of parties other
than the victim. Still, most organisations connected to the
internet operate their network domain autonomously using
their own policies, therefore they share little information
with others, which also applies to the subject of security.

To facilitate cooperation, Deljoo et al. [1] introduce the
concept of security alliances, a framework in which groups
of organisations can help each other to defend against
attacks on one of the members in the alliance.

Security alliances [2] provide certain benefits and ser-
vices such as:

establishing and maintaining trust among the mem-
bers,

facilitating governance and common policies, stan-
dards for its members,

creating a platform for sharing threat intelligence and
incident information among members, and

e applying coordinated defense mechanisms.

When asking help from other members in an alliance,
even when asking for the same defensive actions, defence
performance may differ based on the implementation ap-
proach.

The question is: How do different approaches for the
same defence affect the efficiency of the defence in alliances
consisting of multiple network domains?

In this paper we introduce three approaches that use
collaborators in an alliance for the same defence against
an attack:

o Counteract Everywhere mitigates the attack at every
collaborator;

o Minimise Countermeasures reduces the amount of
mitigation by only mitigating close to attacker;

e Minimise Propagation mitigates as close as possible to
the victim and reduces countermeasure propagation.

Besides the organisational framework there needs to be
some technical infrastructure to support such a collabora-
tion; in our case we use the infrastructure provided by the
SARNET [3] (Secure Autonomous Response NETworks)

project.

In [4, Section 3.2] we introduced a method to evaluate
the efficiency of defences in single domain environments.
In Sec. IV we generalise this formula to allow for mul-
tiple parameters that influence the efficiency. We use this
generalised formula to compute the efficiency of our multi-
domain approaches.

We implement these approaches in the SARNET envi-
ronment and evaluate the efficiency of the approaches dur-
ing attacks with varying conditions. We will argue which
approach fits best for most situations and that care should
be taken in the development of these countermeasures.

The paper is organised as follows: In Sec. II we explain
the SARNET framework we use for this work. Then, we
describe the three different defence approaches in Sec. 111
and explain the generalised efficiency formula in Sec. IV. In
Sec. V we explain how the approaches are implemented in
our SARNET implementation, VNET, that we use to run
our experiments. We discuss the attack scenario in Sec. VI
and in Sec. VII we show the scenarios and conditions we
used for the experiments of which we will show the results
in Sec. VIII. Finally, we discuss our findings in Sec. IX and
conclude and elaborate on the future work in Sec. XI.

II. MULTI-DOMAIN SARNET

SARNET is a framework for detection and mitigation
of attacks on computer infrastructures, i.e. computer sys-
tems that are interconnected using networks to provide a
service [5]. The framework collects metrics from both the
network, the systems connected to the network, applica-
tions running on top of systems and performance metrics
from higher level systems such as the amount of products
that are sold during a time interval. An observable adds
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a condition to the metric that can be monitored to see if
the metric deviates from, thresholds, ratios, level based on
historical values, and past behaviour. When the deviation
is too large, depending on the condition, the observable
changes from a healthy’ to an 'unhealthy’ state. One or
more observables map to a classification; based on the clas-
sification further analysis may happen including database
look-ups to collect the necessary information in order to
decide what defences to pick. When multiple defences
are available for the situation the SARNET picks the
defence with the highest efficiency ranking and executes
it. A defence consists of multiple tasks. After executing
defensive actions, SARNET evaluates the metrics again
and recalculates the efficiency rankings. If the system
performance is still affected significantly by the attack,
the cycle repeats and another defence is tried until all
possibilities are exhausted.

To allow SARNET to operate in multi-domain situ-
ation, each domain needs a separate agent. Agents are
responsible for coordinating activities between collabora-
tors in the alliance. These activities include coordinated
response to threats as well as sharing information such as
threat intelligence or analytics data with agents of other
domains.

A. Defence orchestration

Even when collaborating within an alliance, a member
might not choose to share sensitive data with others
because of company policies, or because laws and other
norms [6] prevent them from doing so. For these reasons,
we used a decentralised approach for defence orchestration.
In our architecture is no central authority with a full
overview of the situation and the domains themselves are
responsible for building their own view of the alliance
and the networks surrounding the alliance. We default
to limited information sharing between the parties; the
amount of information sharing can of course be increased
when the situation requires it. Another advantage of this
decentralised approach is the increase in robustness against
attacks since there is no single point that can be attacked
to cripple defence orchestration.

B. Responsibility

In principle it’s the victims responsibility to detect and
classify the attack and decide on the action that needs
to be taken. Only the victim has the full view of their
infrastructure and knows when it is truly under attack.
Placing the responsibility on the victim also prevents dis-
putes if a collaborator accidentally disrupts benign traffic
since the defence is activated at request of the victim. Of
course, the potential victim is allowed to delegate some
responsibilities to another party when necessary; handling
the potential issues and the intricacies that arise from
delegating responsibility is beyond the scope of this work.

C. Agent communication

Fach member of the alliance runs a multi-domain
agent. The multi-domain agents establish secured connec-
tions with all the other agents in the alliance to send mes-
sages directly between domains. Communicating directly
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removes the complexities of maintaining message integrity.
We distinguish four different kinds of messages:

e Control messages for setting up and maintaining com-
munication to other domains.

Informational messages for requesting information
and responding to the requested information.

Action messages for implementing a certain counter-
measure to reduce the attack impact.

Subscriptions for longer lasting information or actions
such as intelligence feeds or automatic protection.

Note that informational and action messages can result
in simple queries or actions limited to the destined domain
but also to more complex queries or actions where the
destined domain can request help from others. The coun-
termeasures in this paper use only simple direct actions:
1) requesting from which neighbour traffic of a certain
pattern is coming from and 2) dropping the traffic that
matches that pattern.

I11.

We defined three defence strategies for attacks that rely
on cooperation between alliance members:

INTER-DOMAIN DEFENCE STRATEGIES

e Algorithm 1 - Counteract Everywhere
e Algorithm 2 - Minimize Countermeasures
e Algorithm 3 - Minimize Propagation

Algorithm 1 shows the most aggressive approach. The
approach immediately implements a countermeasure in the
victim’s domain as well in all other collaborating domains,
if there is a pattern match. This results in a small impact
because the countermeasure is applied as soon as possible,
but since the countermeasure is applied on all alliance
members this operation is costly (see Equation (1)):

N
cost = ZC’nJrPn Xt
n=1
where N = participating nodes
neN
C,, = fixed cost of node n
P, = cost of node n per time period
t = amount of time periods elapsed

Algorithm 2 reduces cost by only implementing coun-
termeasures at members that see the attack pattern com-
ing in from non-members. Since the nodes at the edge of
the alliance E are a subset of all nodes N implementation
costs (see Equation (2)) are equal to or less as in 1:

E
cost = ZC’Q—&-PE Xt
e=1
where N = participating nodes
ECN
eckE
C@
P,
t = amount of time periods elapsed

fixed cost of edge node n

cost of edge node n per time period



Algorithm 1: Counteract everywhere: asks for coun-
termeasure from every member that sees atack traffic

Input: pattern: attack pattern
alliance: alliance members
N : victim’s neighbours
for node € N do
request node for its neighbours that produce
pattern;
implement countermeasure at node;
for neighbour € neighbours do
if neighbour € alliance A\ neighbour ¢ N
then
add neighbours to N;
end
end
end

Algorithm 2: Minimise countermeasures: places
countermeasures only at where the attack traffic en-
ters the alliance.
Input: pattern: attack pattern
alliance: alliance members
N : victim’s neighbours
for node € N do
request node for its neighbours that produce
pattern;
if dneighbour ¢ alliance then
implement countermeasure at node;
end
for neighbour € neighbours do
if neighbour € alliance N\ neighbour ¢ N
then
add neighbours to N;
end
end
end

The disadvantage of using this approach, though, is
that the time to implement a defence increases; the victim
domain first has to trace the attack origin back to the
edges of the alliance, before it can ask the edge domain to
implement any countermeasure.

Algorithm 3 is another optimisation of Algorithm 1.
This approach reduces cost by reducing propagation, re-
lying on recovery detection. The approach directly applies
the countermeasure at the neighbours but instead of going
to their neighbours directly it first waits for a time period
defined by wait time. Only if the attack is not resolved,
the approach request the nodes’ neighbours for assistance.
Because the approach tries to minimise the amount of
assistance, the implementation costs will be lower (worst
case they are equal to Equation (1)). Yet, waiting while
under attack until we reach wait time has a negative effect
on the impact of the attack compared to Algorithm 1 that
does not wait.

The defence time for Algorithm 3 can improve when the
wait time becomes smaller, although when the chosen wait
time is too small ie. before the system can detect recovery,

115

Algorithm 3: Minimise propagation: minimises
propagation of the countermeasure by filtering close
to the victim.
Input: pattern: attack pattern
alliance: alliance members
N : victim’s neighbours
resolved: true when the attack is resolved
otherwise false
waittime : time to wait for the system to
evaluate its attack state
for node € N do
request node for its neighbours that produce
pattern;
implement countermeasure at node;
wait for time seconds;
if attack not resolved then
for neighbour € neighbours do
if neighbour ¢ N then
add neighbour to N
end
end
end
end

the approach will continue asking other nodes similarly to
Algorithm 1 but with a time penalty. Ideally, wait time
is tuned to the time it takes for the victim to reliably
detect recovery. This implies that the faster the victim
can reliably detect recovery the more efficient Algorithm 3
becomes.

IV. EFFICIENCY

For each defence approach we want to assess its ef-
ficiency as function of relevant metrics in each scenario:
there will be parameters that increase the efficiency, and
parameters that decrease its value.

For example, during or after an attack we observe the
deviation of each relevant metric from its baseline prior
the attack. We define impact as the accumulated deviation
from the start of the defence until the time of evaluation
t. The higher the impact is, the lower the efficiency should
be. On the other hand, efficiency is also constrained by the
available budget to implement a countermeasure. The less
budget is spent, the higher the efficiency becomes.

We evaluate the performance of the defence approaches
by generalising Formula 1 from [4, Section 3.2]. In this
original formula, the efficiency decreased in both allowed
parameters. Now, we expand those formulas to allow for
any finite number of parameters. Given a strictly increas-
ing function f, such that f(0) 0, we assume that
efficiency decreases in f(z;) and increases in f(y;).

In our efficiency formula, we normalise the contribution
of these parameters as follows:

e For factors that decrease the efficiency, x, we nor-
malise to values from 1 to 0 as follows: %
e For factors that increase the efﬁciencg, Y, we normalise

to values from 0 to 1 as follows: J{(((;i)




The efficiency formula utilises the following symbols:

e (3 defines the recovery - no recovery division point.

e The efficiency decreasing factors are denoted as
Y1s-- -, Ym; M is the amount of decreasing factors.

e The factors that increase efficiency are denoted as
Tm41, - - - Tm1; | is the amount of increasing factors.

e The importance o generalises to a1, g, ..., Qpti—1-
The parameters «; fulfil that ZHm ! a; is between 0
and 1 — . The last factor, au, 4, then implicitly gets

the importance of 1 — 8 —> a1 ... Qmyi—1.

To use the efficiency formula, we assume that there
is at least one factor (x,,4;) present that decreases the
efficiency, without loss of generality.

The efficiency is defined as follows, for the case where
we recover from the attack and the one where we do not:

E(recovered or not, Y1, ..., Ym, Tmt1y .-y Tmil) =
BT i + T o LR
+(1-8- Zm+l e )%W Recovered,
Yt ail12) 1 (3)
i e (25 P
+(1 = B = SR o) (325) L= tlmit) - otherwise.

The full characterisation of efficiency is provided in [7].

Equation (4) in Sec. VII shows how we use Formula 3
to compare the efficiency of the approaches in Sec. III.

V. IMPLEMENTATION

To evaluate the three proposed approaches and their
effectiveness we used the SARNET framework. In the
following sections, we first introduce VNET (Sec. V-A);
the elements in our topologies (Sec. V-B); the inter-domain
signalling protocol used by the collaborators in the alliance
(Sec. V-C), and the SARNET/VNET implementation of
the three algorithms (Sec. V-D).

A. VNET

We use the VNET emulation environment to instan-
tiate the topologies in Sec. VII. VNET instantiates the
topology as a network slice [8] on the ExoGENI cloud plat-
form [9]. Each virtual machine on the ExoGENI platform
runs a single domain in our multi-domain setup. We use
two VM types, XOSmall (1 core, 1G RAM) for customer
and transit domains and XOLarge (2 cores, 6G RAM) for
the NFV and service domains. ExoGENI assures that the
requested link capacity between the virtual machines is
guaranteed by preventing overprovisioning and limits the
bandwidth to the requested 100 megabit per link. The
various components inside the domain are separated in
Linux containers [10] using Docker ! and communicate to
each other using MQTT 2. Routing between the domains
is done with the Quagga software router [11] using the
BGPv4 routing protocol [12]. Each domain runs an agent
that talks to other domain agents and to our controller to

Thttps://docker.io
2http://mqtt.org
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configure and execute the attack scenarios. Defences are
started autonomously when an attack is detected by the
local SARNET agent that runs in each domain.

B. Topology building blocks

Using VNET we can construct a virtual infrastructure
by supplying a topology with the following components:

e a service domain contains a webservice that resembles
a market place where clients make purchases;

a transit domain forwards traffic, it provides basic
blocking, redirection and rate limiting functions;

a client domain interacts with the service domain by
making transactions with the service domain;

a NFV domain; provides a set of network functions
(using Network Function Virtualisation, NFV) that
can be used for further analysis such as an Intrusion
Detection System or a honeypot or can be used as a
countermeasure such as a traffic scrubbing NFV.

Traffic flows back and forth from the client domains via
the transit domains towards the service domain. Normally,
the traffic consists of transactions (simulated purchases)
with the service domain. When we start an attack we
instruct one or more client domains to attack the victim
which is the service domain. NF'V domains can be used to
run defensive network functions through which the traffic
can be routed. Although NF'V domains are present in the
topology they have not been used in these experiments
since the available functions are not relevant for the attack
scenario (Sec. VI we use in this paper.

C. Inter-domain signalling protocol

Each domain runs a multi-domain agent that handles
communication between domains (see Sec. II-C). The
multi-domain agent is responsible for keeping track of
multi-domain communication and coordinating with the
local SARNET agent as well as other multi-domain agents
too orchestrate multi-domain defences.

The main responsibilities of the multi-domain agents
focus on requesting defences and communicating queried
metadata that can be useful for a defence, e.g. ’do you see
traffic coming from this TP address?’.

In the current implementation, agents cannot forward
messages that they receive from other agents, therefore
all agents need to able to reach each other directly. The
agents communicate over Transport Layer Security (TLS)
which takes care of authentication and encryption. The
messages that we exchange over the secured connection
are formatted using JSON 3. Another limitation is that
agent can currently only be part of a single alliance.

The multi-domain agent exchanges messages of the
types described in Sec. II-C and are specifically:

Control messages:

e Identify: share identity and neighbours (for topology
building)

3JavaScript Object Notation: https://json.org



Informational messages:

e Ask: ask another agent if it sees traffic matching a
pattern (source address, destination address, protocol
type, minimum traffic rate);

e Match: positive response to ask message with a list
containing the neighbours from which the traffic is
seen, including ingress or egress indication;

e NFV Alive: notify the requesting domain that the
NFV has received (attacker) traffic.

Action messages:

e Deploy: ask domain to deploy changed link-rate, rate
limiter, firewall rule, or to deploy an NFV container
of a specific type;

e Redirect: ask domain to redirect traffic over a differ-
ent link;

e Cancel: remove a deployed countermeasure.

D. Algorithms implementations

The SARNET multi-domain agent allows domains to
share intelligence and to collaborate with each other on
both resolving and gathering information about attacks.
Using flow information, the origin of an attack can be
traced within a domain. Because aiding domains report
back the neighbour from which the attack is coming,
we can trace back attacks throughout the alliance to its
border. Since the domains return where the traffic is really
coming from and not where the traffic is supposed to be
coming from, according to routing protocols, the defences
work correctly even when traffic is spoofed.

Since we use a stateless approach in our network,
the information requests and action tasks will be sent
periodically for as long as the attack persists, both to
continue monitoring whether the attack is still ongoing and
to update defences as the attack characteristics change.

VL

A Distributed Denial of Service (DDoS) attack is a
good example of an attack that requires a collaborative
response. Zagar et al. stipulate in their conclusion that
collaboration, cooperation and distributed defences are key
in defending DDoS attacks [13]. Most of the time the
DDoS attack causes congestion on the link from an Inter-
net Service Provider (ISP) to the victim. For mitigation
to have effect, the victim has to ask their ISP to take
action. Depending on the scale of the attack the bottleneck
can also exist beyond the ISPs control, in which case
other parties need to be included in the resolution of the
problem.

ATTACK SCENARIO

We simulate this attack within the VNET topology by
sending many small UDP packets at a chosen rate origi-
nating from the client domains. The amount of networks
from where the DDoS can originate is constrained by the
amount of client domains we requested in our topology,
which is limited by the resources available on the ExoGENI
rack. Therefore, the attack does not contain the amount of
nodes and the bandwidth that are typical for a large DDoS
attack. Still, the attack has multiple origins that need to be
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blocked in order for defence to have effect so the methods
in this paper still apply when they are optimised for scale.

We classify an attack as a DDoS when the congestion
observable becomes "unhealthy”. The congestion observ-
able monitors two other observables: rzBandwith and sales.
reBandwidth is the used bandwidth measured at the entry
point of the service domain, while sales is the number
of successful transactions to the service provided by the
service domain. rrBandwidth becomes unhealthy if the
amount of incoming traffic on the link to another domain
exceeds 92 percent of the total link capacity. Sales trig-
gers when the amount of transactions to the web service
diverges negatively from the expected amount of sales.

When the attack is classified as DDoS, there are two
solutions: A Local solution where the victim starts filtering
the traffic pattern within its own domain and a Remote
solution using the three approaches discussed in Sec. ITI.

VII. EVALUATION

We evaluate the strategies mentioned in Sec. IIT using
the generic efficiency formula (see Sec. IV)).

The parameter [ defines the cutoff point between
recovered and not recovered. To compute efficiency, we
chose a 8 of 0.2 to allow the efficiency in the recovered
situation to be in the range from 0.2-1.0.

Efficiency uses multiple o to weigh the parameters by
their importance of cost adding up to 1 — f3.

As discussed in Sec. VI, we could use the metrics sales
and rrBandwidth to calculate the impact. We observed
that reBandwith is actually an unreliable metric for evalua-
tion: in fact, an increase in rzBandwidth can indicate both
a negative (DDoS attack) as well as a positive (sudden
increase in customers/sales) effect. For this reason, we set
the weights in the efficiency to W,.Bandwiath = 0 and
Wsaies = 1.0 to make sure rzBandwidth does not influence
the efficiency.

These weights do not include cost. We decided for an
equal balance between the impacts of rzBandwidth and
sales as it comes to cost; so we will multiply each weight,
Wiz Bandwidth and Wggies, by 0.5 such that cost can use
the remaining 0.5.

Finally, we multiply the weights with 1 — 3, to ensure
that the sum of each weight including costs equals 1 — 3
and that the weights can be used as « in the efficiency
(Formula 3).

In a recovered scenario, Formula 3 reduces to the



following for the attack scenario we chose:
T—1
T

B-b

B

_eraT +(1-p—-ap)

ereczﬂ‘f’as g

where S = max sales impact (no sales)
s = actual sales impact sales
«ag = importance of sales
= Wiates X 0.5 x (1 — B)
T = max incoming traffic, link capacity
t = actual incoming traffic, rez Bandwith
ar = importance of traffic

Wiz Bandwidtn < 0.5 x (1 — 3)
B = budget
b = budget spent, or cost

ap = importance of budget
=1-p—(as+ar)
Crec —7 [ﬁa 1]

(4)
This is the equation we will use in the rest of our
evaluation.

A. Evaluation conditions

We vary the following conditions in our evaluation:
topology size, alliance size, budget available at each do-
main, and the attack load.

1) topology and alliance size: We run our experiments
on two topologies:

1) a line topology, the alliance members are connected
in a line. Each member can be connected to at max 2
other members. This is shown in Figure 1;

2) a tree topology, the alliance network forms a tree.
FEach member can be connected to 1 or 3 other
members. This is shown in Figure 2.

Topology 1 - line: The topology we use consists of a
line of 17 nodes of which (S1) is the victim. The transit
nodes (51-58) to form one line, 51 connects to 52 who
connects to 53 etc. Each transit domain except for 51 has
a client domain attached (12-18); client domains interact
with S7 and can use a mix or regular and malicious traffic
to interact with SI1. NI is a NFV domain; we do not use
this domain for our experiments.

Topology 2 - tree: The topology consists of a tree of 17
nodes of which (S71) is the victim. Transit nodes (51-58)
connect the clients (12-18 and are arranged in a tree that
expands from 51. The depth of the tree is 4, with only 58
on that level. Like topology 1: the client domains interact
with S7 using a mix of regular and malicious traffic.

Alliance size adjusts the depth of cooperating domains
from S1. When size equals 0, there’s no cooperation and
S1 acts on its own. When size equals 1, 51 can cooperate in
attack mitigation; 2 includes 52 etc. By default the alliance
size includes all transit domains and is set to 8. Note that
the amount of members in the alliance is 9 because of the
friendly NFV domain, N1 connected to 51, that is included
when alliance size bigger than 1. In topology 2 all transit
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Figure 1: line topology
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Figure 2: tree topology

nodes are already included at size 4, after which increasing
the size has no effect anymore on the defence efficiency.

2) Costs and budget: Costs can differ per domain and
consists of a fixed and a periodic part; the total costs are
bound by the budget. For our experiments, we used a value
of 0 credits for periodic cost and for the fixed cost we used
a value of 100 credits. Practically, this means that every
defensive action executed costs 100 credits and that we can
limit the maximum budget to 900 credits (100 x alliance
size). By default the budget is 900, which is enough credits
to use the full alliance for the defence. Additionally, we run
experiments for a budget of 300, and 600.

3) Attack load: The attack load is dependent on the
amount of attackers and by how much attack traffic they
send; we express it as the accumulated attack traffic in
relation to link capacity on the bottleneck link (the edge
between S7 and 571). An attack load of 1 is the full capacity
of the bottleneck link. An attack load of 2 is twice the
capacity of the bottleneck link. We defined three load
categories low=0.5, medium=0.6 and high=0.9 and default
value is high or 0.9. We also tested for 1.0 and 2.0 to
see what happens when the attack size exceeds the link
capacity.



VIII. RESULTS

We conducted a number of experiments to assess the
efficiency for each of the three approaches in Sec. III on
two topologies using the evaluation parameters described
in Sec. VII-A:

o Alliance size (default==8), the distance from the vic-
tim that determines the domains inside the alliance
(Figure 3);

e Budget (default=900), the amount of ’credits’ that
each domain has assigned for the task (Figure 4);

o Attack size (default=0.9), the accumulated strength
of the attack (Figure 5).

We repeated these experiments for a number of scenar-
ios with a different amount of attackers. We also changed
the attackers’ position in terms of the number of domains
the traffic passes through before reaching the victim. We
define close attackers as clients connected to the transit
domain with the shortest distance from the victim and far
attackers as clients that send attack traffic via the transit
node with the largest distance to victim.

In the end, we selected the following four scenarios,
that show distinct attack patterns, in order to highlight
the advantages and disadvantages of the approaches:

e single attacker close, with the attacker in position 12;
o single attacker far, with the attacker in position 18;
two attackers, one far and one close, respectively at
18 and 12;

attacks from everywhere, all clients attack;

For each experiment, we list the efficiency of the al-
gorithms is on the vertical axis and the values described
in Sec. VII on the horizontal axis. Each measurement was
repeated 3 times and averaged; the error bars depict the
standard deviation from the mean.

A. Topology 1 - line

Figure 3a shows that in single attacker cases Algo-
rithm 2 is performing best; for multi attacker cases Al-
gorithm 3 performs better. In all the cases where one of
the attackers is located far away Algorithm 1 performs
poorly: for large alliances countermeasures are placed at
all the nodes on the path, resulting in higher costs and
lower efficiency.

Figure 4a shows a similar picture, yet Algorithm 1
is even performing worse under low-budget conditions.
Still, Algorithms 2 and 3 are the best performers where
Algorithm 2 is slightly better in single attacker scenarios.

When focusing on the effect of the attack size (see Fig-
ure ba) we observe patterns similar to Figures 3a and 4a:
Algorithms 2 and 3 perform better than Algorithm 1.
However, Algorithm 3 seems to perform better than Algo-
rithm 2 for small attack volumes. Similarly, Algorithm 2 is
performing better than Algorithm 3 for larger attack sizes
when there’s 1 attacker far and 1 attacker close.
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B. Topology 2 -tree

When considering the alliance size in a tree topology
we observe that Algorithm 3 performs better in all cases
(See Figure 3b). In the all clients attacking scenario Algo-
rithms 1 and 2 decrease more drastically; this is due to the
tree topology that doubles the amount of attackers when
the alliance size increases up until alliancesize = 3.

Figure 4b shows, similar to Figure 4a, that Algorithm 1
is the least efficient approach. In the all clients attacking
scenario Algorithm 2 is performing comparably to Algo-
rithm 1 and is not very efficient. This is due to the fact that
also Algorithm 1 needs to implement the countermeasure
at every node in the topology.

Figure 3b compared to Figure 3a shows less aggressive
decline for Algorithm 3 in the all clients attacking scenario.
Again Algorithm 3 is the most efficient except when the
attack size is 2.0 in the I far 1 close scenario where
Algorithm 2 performs slightly better.

IX. DiscussioN

When looking at the results, it becomes apparent that
the way a defence is implemented can influence the perfor-
mance of defending against the attack. We will now high-
light the advantages and disadvantages of each approach
in terms of efficiency:

e Block everywhere: Algorithm 1 has the lowest effi-
ciency because it is very costly.

Minimised countermeasures: Algorithm 2 performs
well in single attacker scenarios for the line topology.
Since this is not the case for the tree topology and the
efficiency is very close to Algorithm 3 it may not be
worth it to make the exception unless very tight on
budget.

Minimised propagation: Algorithm 3 is in most cases
the most efficient approach. The disadvantage is that
the approach does not expel the attack from the
alliance but just constrains the attack impact suffi-
ciently from the victims’ perspective. It is in fact the
case that the attack traffic still passes through the
alliance wasting resources from other members.

There are certain elements that affect the efficiency.
First, consider the parameters in the efficiency formula.
How « is chosen in the efficiency formula determines how
much emphasis we put on certain factors; changing a will
change the efficiency. In this case, since we only compare
successfully defended scenarios; 8 acts as the limit on the
range of efficiency.

Second, the conditions under which the attack occurs
influence the algorithms performance. Algorithms 1 and 2
are directly affected by the alliance size (Figure 3): in
Algorithm 1 this has direct influence on the cost since
countermeasures are applied at all nodes; in Algorithm 2
the alliance size has influence on the total time it takes to
get the required information for every member before it
can apply the countermeasure. Algorithm 3 is not directly
influenced since the approach stops when the attack is
mitigated.
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Third, timings influence the performance of the algo-
rithms; especially the time it takes to request information
can negatively effect performance. In Algorithm 2 the
algorithm first collects information for all nodes, if one of
the nodes takes a long time to respond the countermeasure
delays and efficiency goes down. The response time affects
Algorithms 1 and 3 to a lesser degree, since they apply
countermeasures on a per node basis. As mentioned in
Sec. IIT Algorithm 3 is dependent on the wait time which
is based on the time it takes to detect recovery. In our
case this is set to the amount of seconds it takes to collect
enough samples of our metrics to detect recovery: 16s, plus
a 3s margin for the state to propagate through the system.
Increasing this timing will increase the impact of the attack
and make Algorithm 3 less efficient.

Finally, all algorithms are affected by budget con-
straints as can be seen in (Figure 4).

Heuristics such as using knowledge of existing topology
information can improve the current algorithms. The first
time one of the algorithms is executed it can also con-
struct a view of the network topology which can be used,
subsequently, to shorten query times. For example, the
algorithm directly ask the border domains in the alliance to
block attack traffic coming in, or first target well connected
domains in the alliance to increase the effect of the first
blocking action. Of course this information should be kept
up to date for optimal performance.

When starting our experiments, we expected that the
Minimise Countermeasure approach (Algorithm 2) would
be the most efficient under budget constraints. This ap-
proach blocks the attacks at the source and is considered
to be an effective approach against DDoS attacks [14, 15].
Instead, we found that the Minimise Propagation ap-
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proach (Algorithm 3) was more efficient. Minimise Prop-
agation mitigates attacks sooner because this approach
does not have to trace the attack back to the attackers;
the approach also works with less countermeasures placed
because it stops when the attack impact is sufficiently
reduced. Both factors influence efficiency positively.

However, Minimise Countermeasures may be more ef-
ficient if defence costs are proportional to the amount of
attack traffic: At the border of the alliance there is only
a low amount of traffic. The traffic accumulates the closer
it gets to the victim. Minimise propagation becomes be
less efficient the moment that these proportional costs are
included, as it defends close to the victim where the attack
traffic volume is highest.

Finally, there may be other incentives for defending
close to the attack source, such as reducing attack footprint
throughout the alliance. If these incentives can be quan-
tified they can be used as an additional input parameter
to efficiency. Also in this case we expect that Minimise
Countermeasure would be the most efficient approach.

X. RELATED WORK

A significant amount of research can be found on
collaborative DDoS detection and response. Most of the
papers focus on multi-domain detection [16]-[19], multi
domain defence [20, 21] and combinations of the two [22].
All of these articles focus on a single attack and DDoS
specificly. We use DDoS response only as a basic use case,
yet the approaches that we evaluate in this paper can be
used for asking assistance from friendly domains for any
attack pattern. The collaborative defence approaches in
this paper can be used as a base for defending against
other attacks.



Our work presumes that all participating domains
in an alliance are willing to cooperate. In principle one
would want to verify that the other parties are really
acting upon each request. Mannhart et al. [23] discusses
four approaches to ensure effectiveness of a cooperative
mitigation. The work focuses on validating that the ’mit-
igator’ correctly applied the mitigation. The authors pur-
sue tamper-proof execution and verification of an applied
countermeasure. They conclude that none of their four
approaches alone is capable of providing this. Since we ex-
pect that the collaboration happens in an alliance context,
there is a basic level of trust present between the members
including rules and regulations on how to handle other
members’ data. The evaluation of the defence happens
from the victims perspective and does not rely on any
guarantees from its collaborators.

Meng et al. wrote a taxonomy on collaborative security
systems [24]. They assess multiple security related systems
that use both collaborative detection and collaborative
response to achieve their goals. They identify a number
of challenges in this type of collaborative systems. Our
work addresses a number of them: in regard to privacy
we adopt a limited information sharing mechanism (see
Sec. II-A); incentive is in our case implicit in the existence
of the security alliance; when looking at robustness we
avoid a single point of failure by not relying on a central
coordinator.

XI. CONCLUSION

In this paper, we have evaluated three different ap-
proaches to defending against attacks in multi-domain
settings. To do this, we introduced a generalised formula
for efficiency, that can use any finite number of param-
eters (multiple impacts, costs). Our work shows that the
efficiency of a multi-domain defence depends on the order
and location of the member that executes the tasks that
are part of the defence.

Furthermore, our results showed that Minimise Propa-
gation (Algorithm 3) is the most efficient approach to take
when defending against a DDoS attack. System timings are
another important factor: if tasks are dependent on each
other and the first task takes a long time to complete, the
second task has to wait. This increases the overall run-time
of the defence, which impacts its efficiency. Waiting for the
system to determine recovery also negatively impacts the
defence efficiency.

Our future work will focus on evaluating a fourth
approach that uses the Social Computational Trust Model
described in [25]. We believe that alliance members would
rather ask for support from members that showed that
they are capable and willing to help (evidence-based trust).
We want to assess if such an approach based on these trust
values shows better efficiency than the ones evaluated here.

Another research direction involves network topologies.
VNET allows us to instantiate any topology on which we
can run our attack scenarios. In this paper we used two
basic topologies, tree and line; we plan to further evaluate
the efficiency of our approaches on topologies that are used
in practice by Internet Service Providers.
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Finally, it is interesting to research how dynamic costs
affect efficiency. In this paper we did not use periodic or
dynamic costs; we also kept the costs equal at all collabora-
tors. Introducing dynamic budgets based on attack traffic
or on periodic cost, for as long as the countermeasure is
active, has an effect on efficiency. Due to the dynamic
cost, defence costs are not known a-priory and since active
defences consume budget over time one may have to switch
to another defence approach halfway in order to remain
efficient.
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