
Removing Undesirable Flows by Edge
Deletion

Gleb Polevoy1(B), Stojan Trajanovski1,2, Paola Grosso1, and Cees de Laat1

1 University of Amsterdam, Amsterdam, The Netherlands
G.Polevoy@uva.nl

2 Philips Research, Eindhoven, The Netherlands

Abstract. Consider mitigating the effects of denial of service or of mali-
cious traffic in networks by deleting edges. Edge deletion reduces the
DoS or the number of the malicious flows, but it also inadvertently
removes some of the desired flows. To model this important problem,
we formulate two problems: (1) remove all the undesirable flows while
minimizing the damage to the desirable ones and (2) balance remov-
ing the undesirable flows and not removing too many of the desirable
flows. We prove these problems are equivalent to important theoretical
problems, thereby being important not only practically but also theoret-
ically, and very hard to approximate in a general network. We employ
reductions to nonetheless approximate the problem and also provide a
greedy approximation. When the network is a tree, the problems are
still MAX SNP-hard, but we provide a greedy-based 2l-approximation
algorithm, where l is the longest desirable flow. We also provide an algo-
rithm, approximating the first and the second problem within 2

√
2 |E|

and 2
√

2(|E| + |undesirable flows|), respectively, where E is the set of
the edges of the network. We also provide a fixed-parameter tractable
(FPT) algorithm. Finally, if the tree has a root such that every flow in
the tree flows on the path from the root to a leaf, we solve the problem
exactly using dynamic programming.

1 Introduction

Attacks such as the (distributed) Denial of Service (DDoS) [14] are
widespread [19] and heavily impede the functionality, especially when the system
is required to be quick (soft real time, for example) [13]. One of the options to
fight the problem is deleting network edges or disabling them (anyway, deleting
from the network graph) [11]. Another practically important problem is having
malicious connections, like Trojans. The danger is not only the bandwidth these
connections take but primarily the information they transfer.

We define a flow as a path from the source to the sink and we model DoS
or merely malicious communication as a set of undesirable (name them bad)
flows. The system has also desirable (call them good) flows. We aim to remove
the undesirable flows by deleting some edges on their paths, while minimizing
the resulting damage to the desirable flows. The model assumes no rerouting of
c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 217–232, 2018.
https://doi.org/10.1007/978-3-030-04651-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04651-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-04651-4_15

218 G. Polevoy et al.

flows. If we delete an edge on the path of a bad flow, we consider that flow to be
removed, but we also inadvertently remove all the good flows that pass through
the deleted edge.

We can identify the DoS flows by frequent access trials from the same IP
group, and the malicious flows can be identified by information leaks. Therefore,
we assume we know which flows are good and which are bad.

Judicious deletion is crucial, as Example 1 shows. We need to autonomously
decide which edges to delete as suggested in [11]. This calls for an algorithm to
find which edges to delete. In order to cope with large instances in real time, the
algorithm has to be polynomial.

Example 1. In Fig. 1, removing all the bad flows by deleting their only common
edge e would remove no good flows. This is infinitely better than removing each
bad flow bi by deleting any of its edges other than e, because that would also
remove gi.

b1
g1

b2
g2

bp
gp

e

Fig. 1. The bad flows are denoted by b with an index, while the good ones are denoted
by g with an index. The paths of flow bi and gi coincide, besides edge e, belonging only
to the bad flows.

Consider this example of using an algorithm that finds which edges to delete.

Example 2. In a (for example, software-defined) network, assume that the intru-
sion detection system discovers a DDoS attack, and determines which flows are
attacking. We need to respond quickly and efficiently by removing certain links
from the network. Assuming we know which flows are desirable and which are
attacking, we first estimate how important it is not to remove each desirable
flow by deleting a link. Now, we run our algorithm to obtain an (approximately)
easiest set of the edges to delete, such that all the attacking flows are removed
(disconnected) while the minimum damage is inflicted on the desirable flows.

We present the necessary background in Sect. 1.1. To solve the problem, in
Sect. 2 we model the situation as two possible problems. First, we show in Sect. 3
that our problems are equivalent w.r.t. approximation to notorious hard prob-
lems. Those hard and important problems admit polynomial approximations,
but those are extremely loose. We then reduce the problems to submodular set
cover to use approximation known for that problem and also suggest a greedy

Removing Undesirable Flows by Edge Deletion 219

approximation in Sect. 4. We approximate the important particular case when
the network is a tree in Sect. 5, which is still MAX SNP-hard. We assume in
Sect. 5.3 that the tree has a root such that every flow is on the path from the
root to a leaf, as often happens when communicating through service providers to
the backbones, and solve this case exactly using dynamic programming. Finally,
we provide a fixed parameter tractable (FPT) algorithm for trees in Sect. 5.4.
These results suggest determining the kind of network we have at hand and sub-
sequently applying the best applicable algorithm. We summarize our approach
and suggest further research directions in Sect. 6.

We approximate the problem in general and provide additional approxima-
tion and exact algorithms for special cases such as trees.

1.1 Related Work

We study edge deletion that removes the bad flows and does not remove too many
good ones, which is a new problem in the realm of edge deletion problems. The
simpler problem of deleting the minimum number of edges that can disconnect all
the flows from a source to a sink is a famous problem, and Menger’s theorem [2,
Chap. 3.2] characterizes the minimum number of edges one has to remove in order
to disconnect the source from the sink. Finding a minimum cut in a graph [4,
Chap. 26] and disconnecting it is optimal for this problem.

There are many other problems of edge deletion, such as deleting the min-
imum number of edges to obtain certain properties like no cycles of various
lengths [18], or removing forbidden graphs [17]. Similar network design studies
include other problems, such as edge addition [10]. In practice, edge deletion can
be especially easily implemented in a software-defined network. See [11] for a
practical example.

There are many important vertex deletion problems as well, such as the
famous vertex cover problem [7]. Other vertex deletion problems include the
feedback vertex set, where we aim to break all the cycles in a graph [1], and the
problem of breaking all the cycles of a given length or at most a given length [18].

2 Model

Let the flow network be a directed graph G = (N,E). A flow f from node a to
node z in this network is a path from source a to sink z, each of which edges
carries the flow. Formally, f = (P (f)), where P (f) is the set of the edges of
the path that the flow takes from a to z. Flow in this paper are not splittable,
meaning that a flow takes a single path. This can also model a splitting flow as
separate flows with partially overlapping paths. We do not model the capacities
of the edges and the values of the flows, because these notions are irrelevant
to the problem. Of course, real flows have values and real edges (say, wires or
roads) have capacities, and the total flow value on an edge cannot exceed the
capacity of the edge.

We model removal of undesirable flow as two problems. The first one follows:

220 G. Polevoy et al.

Definition 1. The Bad Flow Removing (BFR) problem receives the input
(G = (N,E), F,GF,BF,w : GF → R+). Here, G = (N,E) is a network with
flows F = {fi}, where some flows, denoted GF = {gi} ⊆ F , are marked as good
(desirable), and the rest, denoted BF = {bi} Δ= F\GF , are bad (undesirable).
Every good flow f is endowed with a weight w(f), designating how important the
good flow is.

A solution S ⊆ E is a subset of edges to delete.

Flow f is removed by S if S ∩ P (f) �= ∅; otherwise, it is remaining. A feasible
solution is a solution such that all the bad flows are removed.

We aim to find a feasible solution with the minimum total weight of the removed
good flows. Intuitively, we aim to remove all the bad flows while minimizing the
weight of the removed good flows.

BFR assumes we have to get rid of all the bad flows. For instance, when
flows can spread malicious content or steal information, leaving even few flows
can harm the network. Since sometimes bad flows are mostly taking resources
and are not so dangerous, we may merely want to remove most of bad flows
while still not losing too many good ones, so we relax the requirement to remove
all the bad flows and allow leaving them for a cost:

Definition 2. The Balanced Bad Flow Removing (BBFR) problem receives
(G = (N,E), F,GF,BF,w : F → R+); the difference from the BFR is that all
the flows are weighted.

Here, a solution is the same as in BFR, but any solution is feasible here.

We aim to find a feasible solution such that the total weight of the remaining bad
flows plus the total weight of the removed good flows is minimized. Intuitively,
we aim to balance removing the bad flows and not removing too many good ones.

Denote by D(S) the flows removed from the set of flows D by deleting the
edges S. We define the weight of a set of flows D ⊂ F as

∑
f∈D w(f), which

we denote as w(D), abusing the notation w. Therefore, BFR removes all the
bad flows (BF (S) = BF) while aiming to minimize w(GF (S)), while BBFR
targets to minimize the w(BF\BF (S))+w(GF (S)). We do not add a balancing
parameter such as in w(BF\BF (S)) + αw(GF (S)), because the weights can be
defined already with balancing in mind, modeling such a balancing.

This formalism allows to prune all the edges that do not belong to good
flows, so we can assume that all edges belong to at least one good flow. On the
other hand, if one wants to avoid deleting edges lightly, one can model this by
introducing dummy good flows of length 1 through all the edges.

3 Equivalence Resulting in Hardness and Approximation

We prove that Problems BFR and BBFR, are equivalent w.r.t. approximation to
the classical Red-Blue Set Cover [3] and to the Partial Set Cover [12] problems,
respectively. This immediately implies strong inapproximability and provides
some approximation algorithms.

Removing Undesirable Flows by Edge Deletion 221

3.1 BFR

We first formally define the RBSC problem.

Definition 3. The Red-Blue Set Cover (RBSC) problem [3] receives the input
(R,B,S, w : R → R+), where R and B are two disjoint sets of red and blue
elements and S ⊆ 2R∪B, i.e. every set S in the collection S is a subset of
R ∪ B. These subsets can cover all the blue elements, i.e. B ⊆ ∪S∈SS. Finally,
w denotes the weight of the red elements.

A solution is a subcollection C of S.

A feasible solution is a solution C that covers all the blue elements, i.e. B ⊆
∪S∈CS. The aim is to find a feasible solution with the minimum total weight of
the covered red elements, w(C) Δ=

∑
r∈R∩{∪S∈CS} w(r).

Theorem 1. BFR is equivalent w.r.t. approximation to RBSC. Reducing from
RBSC to BFR, we can ensure that |E| = 2 |S|, |GF | = |R| + 1 and |BF | = |B|.
Reducing from BFR to RBSC, |S| = |E| , |R| = |GF | and |B| = |BF |.
Proof. We first reduce RBSC to BFR. For each set S ∈ S, define edge eS and
let all the edges have a common node. Define good flow gi for each red element
ri ∈ R, with the same weight, and bad flow bj for each blue element bj ∈ B,
such that the path of a flow contains edge sS if and only if the element from
which the flow has been created is included in S. To be able to route flows
through the required edges from E(S) Δ= {eS |S ∈ S}, we add edges, called E′,
that connect the non-common nodes of the edges from E(S), as illustrated in
Fig. 2. To prevent choosing the edges from E′, we define an additional good flow
that contains every edge from E′, and we give this good flow a prohibitively high
weight, say 2

∑
g∈GF w(s). The solutions to the constructed BFR are directly

transformed to solutions for RBSC, besides the case when a solution for BFR
contains an edge from E′. Such solutions are transformed to the trivial solution
for RBSC that contains all the sets. Unless edges from E′ are selected for the
solution for BFR, the weight of the covered red elements is equal to the weights
of the removed good flows. If edges from E′ are selected, then the cost of that
solution is at least twice higher than the cost of the corresponding solution for
RBSC. Therefore, the reduction preserves approximation.

We now reduce BFR to RBSC. Make a red element from a good flow, a blue
element from a bad flow and a set from an edge, such that the set contains exactly
the flows that have the edge on their paths. The weights are transferred as they
are. The solution to the obtained RBSC instance is mapped to a solution for the
original BFR in the reverse manner. This mapping preserves being a solution,
feasibility and the weights. �

This theorem immediately implies that all the hardness and all the positive
results for RBSC transfer to BFR. In particular, Theorems 3.1 and 3.2 from
Sect. 3 of [3] imply the following.

222 G. Polevoy et al.

RBSC BFR

S1

S3

b1 r1

b3

b2

S2

eS1 eS2

eS3

b1

b2

b3 g1

Fig. 2. On the right, the bad flows are denoted by b with an index, while the good
ones are denoted by g with an index. The dashed lines are the E′ edges.

Corollary 1. 1. Unless NP ⊆ DTIME(npolylog(n)), it is impossible to approxi-
mate BFR within O(2log1−δ|E|), for any δ > 0.

2. Unless P = NP, it is impossible to approximate BFR within O(2log1−δ|E|),
where δ = 1/ log logc |E|, for any constant c < 0.5.

Proof. The existing hardness results state the impossibility to approximate
within O(2log1−δ|S|), for certain values of δ. If BFR could be approximated within
O(2log1−δ|E|), reducing RBSC to BFR would allow approximating RBSC within
O(2log1−δ 2|S|), contrary to the impossibility. �

On the approximation side, Theorems 3.5 and 3.6 from [15] imply that.

Corollary 2. BFR can be approximated within 2
√|E| log |BF |.

Proof. The approximation follows by reducing the given instance of BFR to
an RBSC, employing Algorithm Low Deg2 from Sect. 3 of [15] on the obtained
instance of RBSC, and then translating the obtained cover to a set of the corre-
sponding edges. The transformations from BFR to RBSC and back preserve the
approximation ratio, and the approximation of the algorithm, 2

√|S| log |B|, is
equal to 2

√|E| log |BF |, since each edge defines a set in the reduction of BFR
to RBSC. �

3.2 BBFR

For the sake of handling the BBFR problem, we define a problem we will reduce
to and from, namely the Positive-Negative Partial Set Cover problem, which
generalizes the unweighted definition from Sect. 1.1 from [12].

Definition 4. The Positive-Negative Partial Set Cover (±PSC) problem
receives the input (R,B,S, w : R ∪ B → R+), where R and B are two disjoint

Removing Undesirable Flows by Edge Deletion 223

sets of red and blue elements and every set S in the collection S is a subset of
R ∪ B. Finally, we denote by w the weight of the elements.

A solution is a subcollection C of S.

Any solution is feasible here. The aim is to find a feasible solution with the min-
imum total weight of the uncovered blue elements plus the covered red elements,
w(C) Δ=

∑
b∈B\∪S∈CS w(b) +

∑
r∈R∩{∪S∈CS} w(r).

We now reduce BBFR to and from ±PSC, omitting the proofs to save space.

Theorem 2. BBFR is approximation-equivalent to ±PSC. Reducing from
±PSC to BBFR, we can ensure that |E| = 2 |S|, |GF | = |R|+1 and |BF | = |B|.
Reducing from BBFR to ±PSC, |S| = |E| , |R| = |GF | and |B| = |BF |.

This theorem implies that the hardness results and the approximation results
transfer from ±PSC to BBFR. In particular, the following holds:

Corollary 3. 1. Unless NP ⊆ DTIME(npolylog(n)), it is impossible to approxi-
mate BBFR within O(2log1−δ|E|), for any δ > 0.

2. Unless P = NP, it is impossible to approximate BBFR within O(2log1−δ|E|),
where δ = 1/ log logc |E|, for any constant c < 0.5.

3. Unless P = NP, there is no approximation to BBFR within O(2log1−δ|BF |),
for any δ > 0.

As for approximation, Corollary 3 from [12] implies.

Corollary 4. BBFR is approximable within 2
√

(|E| + |BF |) log(|BF |).

4 Approximation

First, consider the approximation for submodular cost set cover within the max-
imal frequency of an element from [9, Sect. 4.4]. Since the total weight of the
removed good flows is a submodular function of the chosen edge subset, that
approximation applies to BFR. The maximal frequency of an element becomes
the maximal number of edges a bad flow contains, i.e. l′, which is the approxima-
tion ratio for BFR. We can also approximate BBFR using the following theorem.

Theorem 3. BBFR can be reduced to BFR while preserving approximation by
extending the path of each bad flow at its end by an edge with a new second node
and defining a new good flow with the path that consists solely of this new edge
and with the weight w(bi).

Proof. Miettinen [12, Sect. 2.2] reduces ±PSC to RBSC, inspiring us to
the following reduction of BBFR to BFR. Given a BBFR instance
(G = (N,E), F,GF,BF,w : F → R), construct the following BFR instance
(G = (N ′, E′), F ′, GF ′, BF ′, w′ : GF → R). We extend the path of each bad flow

224 G. Polevoy et al.

bi at its end by an edge with a new second node and we also define a new good
flow with the path that consists solely of this new edge. The weight of the new
good flow is defined to be w(bi), and the function w is restricted to GF , to obtain
a BFR. We transform a solution S to this BFR to the solution S ∩ E for the
original BBFR.

Similarly to [12, Sect. 2.2], the approximation S ∩ E provides for the original
BBFR is at least as good as the approximation S provides for BFR. �

This reduction increases the maximum length of a bad flow by 1, and thus,
allows approximating BBFR withing (l′ + 1).

We also propose the following greedy algorithm, inspired by the famous
greedy algorithm for set cover [16, Algorithm 2.2] and the greedy algorithm
from [15, Sect. 3.1].

ALGORITHM 1. GreedyBFR(G = (N,E), F,GF,BF,w)

1. Given a BFR instance, define the following weighted set cover instance.
(a) the elements are the bad flows with all edges intersecting good flows;
(b) the sets are the good flows, a good flow covering all the bad flows it

intersects.
2. Approximately solve this set cover instance, obtaining the output S ⊆ GF .
3. Return the edge set of S, i.e. ∪g∈SP (g), augmented with edges of bad flows

intersecting no good flows.

Proposition 1. Algorithm1 approximates BFR within factor k · (ln(|BF |)+1).

Proof. Algorithm 1 returns a feasible solution, since all the bad flows intersecting
at least one good flow can be covered by the edges of the good flows.

As for the approximation ratio, call the original problem I and let I ′ denote
the problem we construct in line 1. Problem I ′ models directly removing the
bad flows by removing the good ones that intersect them, ignoring the fact that
removing occurs through deleting edges, which can remove several intersecting
good flows simultaneously. Therefore, opt(I ′) ≤ opt(I), and so the ln(|BF |)+1-
approximation to I ′ costs at most ln(|BF |) + 1 times opt(I). We do have to
add the intersecting good flows to ensure feasibility. This action can require the
k factor, implying the proposition. �

Theorem 3 implies we can approximate BBFR within the same factor.
Theorems 1 and 2 imply that this algorithm allows approximating the Red-Blue
Set Cover and the Positive-Negative Partial Set Cover within k · (ln(|B|) + 1), k
being the maximum number of the red elements that a red elements can have a
common set with.

Remark 1. Using the 2-approximation for set cover on trees [8, Sect. 7] instead
of the general approximation for set cover, we can adopt Algorithm1 to approx-
imate BFR on trees within 2k. As before, Theorem 3 implies the same approxi-
mation factor for BBFR as well.

Removing Undesirable Flows by Edge Deletion 225

Similarly to Peleg [15, Sect. 3.2], we could continue with dividing the good
flows to those intersecting many other good flows and not, approximating the
problem with the good flows intersecting not too many other good flows and
bounding the number of good flows that intersect many others. We omit the
details, because this approach would yield the same approximation ratios as
Peleg receives for Red-Blue Set Cover.

5 Trees

We showed that the problems BFR and BBFR are extremely hard to approx-
imate, though we still provided approximations. Given the proven hardness of
the general case, we now concentrate on trees, often found in communication
networks. Trees subsume star networks, for instance. For trees, we can do more.

5.1 Hardness

We will show that BFR and BBFR problems are MAX SNP-hard even for trees.
First, we prove an important result, connecting the two problems.

Theorem 4. BFR is reducible to BBFR with an approximation-preserving
reduction that preserves the problem instance, besides assigning weights to the
bad flows.

Proof. Consider the following reduction. Given an instance x of BFR, con-
struct an instance x′ of BBFR by defining the weight of each bad flow to be
2
∑

g∈GF w(g). Then, a solution y′ of x′ is directly transformed to a solution y of
x, unless y′ does not cover all the bad flows. In the latter case, y′ is transformed
to the trivial solution for x that simply contains all the edges. Now, the weights
of the solutions y and y′ are equal, unless y′ does not cover all the bad flows. In
the latter case, however, the weight of y′ is at least twice larger than that of y,
by the definition of the weights of the bad flows. �

We are now set to prove the following hardness result.

Proposition 2. Even on trees of height 1 and good flows of unit weights,
the problems BFR and BBFR are MAX SNP-hard and not approximable
within 1.166.

The proof reduces BFR to the tree set cover and is omitted for lack of space.

5.2 Approximation

Having shown the hardness, we design two approximation algorithms for BFR.
Later, we show that similar results hold for BBFR as well.

We now suggest other algorithms for BFR on trees that approximate it
within 2l and 2

√
2 |E|. These algorithms refine the Greedy RB and Low Deg2

algorithms, respectively, for RBSC from [15]. Recall that l is defined as

226 G. Polevoy et al.

max {|P (g) : g ∈ GF |}, the maximum length of a good flow. We first assume
a non-weighted BFR; the extension for the weighted case is straight-forward.

First, in a tree Set Cover can be approximated within the factor of
2 [8, Sect. 7]. This allows, extending [15, Sect. 3.1], to reduce BFR to Set
Cover on trees and obtain the approximation ratio of 2l. Call this algorithm
SCTreeGreedy. This is a useful algorithm on its own right, and we continue
now to obtain a 2

√
2 |E|- approximation.

In order to present the final approximation, we first present Algorithm2,
inspired by Low Deg from [15].

ALGORITHM 2. Low Deg TreeBFR(G = (N,E), F,GF,BF,w, x)

1. Remove the edges in E that belong to more than x good flows, creating E′ and

defining a new problem instance (G′ = G[E′], F ′, GF ′, BF ′, w, x), where G[E′] is
the subgraph induced by E′, and so are the flows F ′, GF ′ and BF ′.

2. If the new instance is infeasible, return E (the trivially feasible solution).

3. Let the long good flows be GF ′
l

Δ
=

{
g ∈ GF ′ : |P (g)| >

√
|E| /2

}
.

4. Leave only the not long good flows, i.e. GF ′
s

Δ
= GF ′ \ GF ′

l .

5. Return SCTreeGreedy(G′ = G[E′], F ′, GF ′
s, BF ′, w, x).

Similarly to Lemma 3.3 from [15], we prove Lemma 1.

Lemma 1. Let x be the last input to Algorithm2 and let the long good flows of
GF ′ be GF ′

l
Δ=

{
g ∈ GF ′ : |P (g)| >

√|E| /2
}
. Then, |GF ′

l | <
√

2 |E|x.

Proof. Since every edge in E′ belongs to at most x good flows, we have

∣
∣GF ′

l

∣
∣
√

|E| /2 <
∑

g∈GF ′
l

|P (g)| ≤
∑

g∈GF ′
|P (g)| =

∑

e∈E′
|{g ∈ G|e ∈ P (g)}| ≤ ∣

∣E′∣∣x ≤ |E|x,

the first inequality stemming from the definition of GF ′
l , and the equality

being a reversal of the summation order. Therefore, |GF ′
l | < |E|x/

√|E| /2 =√
2 |E|x. �
And we can now prove.

Lemma 2. Let S∗ be an optimal solution for the BFR instance at hand (if we
knew it). If we activate Algorithm2 with x̂

Δ= max |{g : GF |e ∈ P (g) ∩ S∗}|, then
it returns a 2

√
2 |E|-approximation.

Proof. By definition of x̂, the algorithm returns a feasible solution in line 5.
Since SCTreeGreedy yields an 2l-approximation and its input has l ≤√|E| /2, then its solution, say S, fulfills |GF ′

s(S)| ≤ √
2 |E| |GF ′

s(S
∗)|. Lemma 1

applies that |GF ′
l | <

√
2 |E|x̂. Therefore, the total number of removed good

flows is |GF (S)| <
√

2 |E| |GF ′
s(S

∗)| +
√

2 |E|x̂. Since x̂ ≤ |GF (S∗)|, we can
bound |GF (S)| by 2

√
2 |E| |GF (S∗)|. �

Removing Undesirable Flows by Edge Deletion 227

We are now ready to present the full algorithm for approximating the actual
problem, where we do not know the x̂ in advance.

ALGORITHM 3. Low Deg TreeBFR2(G = (N,E), F,GF,BF,w)

1. min sol ← E
2. for x = 1 . . . |GF | do:

(a) S ← Low Deg TreeBFR (G = (N,E), F,GF,BF,w, x)
(b) if w(GF (S)) < w(GF (min sol)) :

min sol ← S
3. return min sol

Lemma 2 implies the following.

Theorem 5. Algorithm3 approximates the solution to BFR within 2
√

2 |E|.
This has been proven for the non-weighted case, but is straight-forward to extend
the result to the weighted case.

Having found approximations for BFR within 2l and 2
√

2 |E|, we approxi-
mate BBFR:

Theorem 6. BBFR can be approximated within 2l and within
2
√

2(|E| + |BF |).
Proof. We employ the approximation preserving reduction from Theorem3. The
new graph is still a tree, because we have added connected edges and created no
cycles. We can, therefore, solve it using an algorithm for BFR on trees.

If we employ the 2l approximation, we obtain the same approximation ratio
for BBFR, since only the length of the bad flows has increases when reducing
from BBFR to BFR. Alternatively, if we employ the 2

√
2 |E|-approximation, we

obtain a 2
√

2(|E| + |BF |)-approximation, since the reduction introduces |BF |
new edges. �

5.3 Trees with Root-to-Leaf Flows

Since communication often goes from the clients to the Internet Service Providers
(ISPs) and then to the backbone, we assume that the network is a tree, and there
exists a fixed node r called root, such that every flow is on a path from the root
to a leaf.

This assumption allows us to solve both BFR and BBFR exactly using
Dynamic Programming (DP). We define a subproblem of our DP to be a sub-
tree and the flows that strictly flow through its root after possible edge deletions
outside this subtree. Let v ∈ N be a node and let P (v) be the set of the edges on
the (only) path from v to the root of the tree. Let F (v) Δ= {f ∈ F : v is on P (f)}
be the set of the originally given flows that pass through v. Denote by T (v) the

228 G. Polevoy et al.

subtree rooted on v. The possible subsets of flows that enter T (v) after deleting
some edges outside of T (v) are F(v) = {F (v)\F (v)({e}) : e ∈ P (v)}1. We do
not consider deleting a subset of edges on P (v), because for F(v) it would be
equivalent to deleting the edge of this subset that is closest to v.

The DP Algorithm 4 receives a root r such that every flow is on a path from
r to a leaf and solves BFR and BBFR exactly.

ALGORITHM 4. DPAlg TreeRoottoLeaf(G = (N,E), F,GF,BF,w, r)

1. The algorithm maintains the DP-table indexed by {v,F(v) : v ∈ N \ {r}}.
2. For each node v ∈ N \ {r} in a post-order traversal (i.e. its subtree has been

handled):

(a) For each S ∈ F(v):

i. Delete the edge from v to its parent ⇐⇒ it maximizes the total objective

function in T (v). This uses the optimal solutions that we have

memoized for the children of v.

ii. Memoize the resulting edge deletion and the resulting objective function

for the current entry (v, S) ∈ {v,F(v) : v ∈ N \ {r}}.
3. The completed DP-table contains an optimal set of edge deletions.

Theorem 7. Algorithm4 optimally solves the problem on trees when all the
flows are from the root to leaves in O(|N |3 |F |).
Proof. The algorithm is correct, since all the flows go from the root to a leaf,
thereby making such a traversal consider all the relevant edge deletions.

For each entry in the DP-table, the algorithm looks at all the children of the
current node. There are at most |N |2 entries, because each F(v) contains |P (v)|
elements, as defined and explained above. Each entry requires looking at all the
flows that pass through the node, providing the factor of |F |. In addition, a node
has at most |N | − 1 children, implying the theorem. �

In the rest of the section, when a flow from a to z does not flow from the
root r to leaves, we may split it to two parts that do by looking at the first node
on the (only) path from a to r that is also on the (only) path from r to z.

Approximation when All the Bad Flows are Root-to-Leaf. If we find a
root such that the bad flows can be guaranteed to be from that root to leaves,
we can 2-approximate the problem as follows. Given such an instance I and a
root r we define another instance I ′ by splitting each good flow g that does not
flow from r to a leaf to two good flows that do. Define the weight of each one of
the obtained good flows to be w(g). Denote the weight of the optimal solution
to an instance by opt(instance). Then, opt(I ′) ≤ 2opt(I). Therefore, we can
solve I ′ using Algorithm 4 and this will constitute a 2-approximation for I.
1 We remind that for a set of flows D and a set of edges S, we denote by D(S) the

flows from D removed by deleting S.

Removing Undesirable Flows by Edge Deletion 229

FPT when All the Good Flows are Root-to-Leaf. If we actually find a
root such that the good flows are from the root to leaves, we can split each bad
flow that does not go from the given root to a leaf by splitting each bad flow b
that does not flow from r to a leaf to two bad flows that do. Remove one of
the parts and leave the other part. If we are given a BBFR instance, assign the
remaining part of the bad flow the weight of the original bad flow. We solve each
of the obtained problems for each such a split of the bad flows and output the
best solution. This constitutes an optimal algorithm that runs in O(2|BF |) times
a polynomial time.

5.4 FPT for Trees

Section 5.3 assumes some of the flows are from the root to leaves. We now advance
and prove that when the flows follow any simple paths, meaning that a flow does
not intersect itself, then the problem is fixed-parameter tractable, parametrized
by the number of the bad and the number of the good flows.

We first present the definition of a parametrized optimization problem and
fixed-parameter tractability with several parameters, adapted from [5,6].

Definition 5. A parametrized optimization problem with t ∈ N parameters is
a set of instances Σ∗ × N

t, where Σ is a finite alphabet, encoding the object at
hand, and the t natural numbers are called the parameters.

For example, set cover parametrized by the total number of the elements is a
parametrized optimization problem. Tractability is defined as follows.

Definition 6. A parametrized optimization problem with t parameters, consist-
ing of the instances Σ∗ × N

t, is called fixed-parameter tractable (FPT) if there
exists an algorithm A, a computable function f : Nt → N, and a constant c such
that if A receives instance (x, k1, . . . , kt) ∈ Σ∗ × N

t, it computes an optimal
solution to it within at most f(k1, . . . , kt)(|x| + k1 + . . . + kt)c time.

Intuitively speaking, only the parameters may contribute more than a polyno-
mial to the run time. We are now ready to prove that BFR and BBFR, when the
network is a tree and the flows have simple paths, is FPT. Consider Algorithm5.

Notice that step 2 follows the approach of Sect. 5.3, only that now there is
no assumption about flowing from the root to the leaves.

We summarize Algorithm 5 in the following theorem.

Theorem 8. Algorithm5 runs in time O(2|BF |4|GF | |BF | |GF | |N |3 |F |).
Proof. The algorithm is correct, because it goes over all the possibilities to
remove bad flows and good flows. A bad flow can be removed be deleting either
edge on its path, so we just choose the best option. A good flow has to be paid
for only once, if it is removed at all, and so we nullify the weight of a good flow
if the other split part has been removed.

As for the time complexity, maintaining the splits of the bad and of the
good flows takes the factor of |BF | |GF |. The algorithm first goes over O(2|BF |)

230 G. Polevoy et al.

ALGORITHM 5. DPAlg Tree(G = (N,E), F,GF,BF,w)

1. Arbitrarily pick a node to be the root. Call it r.

2. Split each bad flow that does not flow from the root to a leaf to two parts that do.

3. Delete one part, and if this is a BBFR instance, define the weight of the remaining part

to be the weight of the original flows. For each bad flow that does

not flow from r to a leaf, there are 2 options as to which part to delete. For each

set of options, do:

(a) For each good flow that has a path not from r to a leaf, split it to two parts

that do, and assign each part the weight of the original good flow.

(b) Solve the obtained instance using Algorithm 4 with the following adjustment.

If the dynamic programming decides to delete an edge from a split part of a

good flow,

then it has to assign the second part of that flow zero weight (in its subtree).

Accounting for 2 options per a split good flow each time requires 2 attempts

per each split good flow that enters the subtree.

4. Return the best solution from all the solutions in the above tried combinations.

splitting options for bad flows (i.e. which part of each split bad flow to delete).
For each such an option, it splits the good flows and runs Algorithm4, while
trying all the options for the weights of each split good flow, i.e. O(22|GF |).
Employing Theorem 7, the total resulting time is

O(|BF | |GF | · 2|BF | · 22|GF | |N |3 |F |) = O(2|BF |4|GF | |BF | |GF | |N |3 |F |).

�

This immediately implies the following.

Corollary 5. BFR and BBFR parametrized by |BF | and |GF | are FPT.

6 Conclusion

We study two problems that model fighting DoS and malicious communication:
BFR and BBFR. We need to delete edges so that the bad (undesirable) flows are
disconnected. Unlike the usual network design problems [18], we do not merely
minimize the number of the deleted edges, but rather the resulting number of the
disconnected good (desirable) flows. We prove that in the general setting, these
problems are extremely hard to approximate, being approximation equivalent
to hard problems. We reduce our problems to submodular set cover to provide
a approximation and provide a greedy approximation as well. In the important
case when the network is a tree, the problems are still MAX SNP-hard, and
we provide an approximation algorithm. Furthermore, if the tree can be rooted
such that every flow is on the path from the root to a leaf, we solve the problems
exactly using dynamic programming (DP). This also inspires us to 2-approximate
the case where just the bad flows are known to be from the root to leaves and to

Removing Undesirable Flows by Edge Deletion 231

provide fixed parameter tractable algorithms for the case of just the good flows
being from the root to leaves and for the general case of a tree network.

These results suggest removing all the edges that do not pass through a
good flow, being free, and then checking for every connected component of the
resulting graph whether it is a tree. If yes, we can employ the designed algorithm
for trees. Furthermore, if a root can be chosen such that every flow in such a
tree flows on the path from that root to a leaf, then the suggested DP solves
the problem exactly. In case the number of the bad and the good flows are
small, we can also employ the suggested fixed parameter algorithms. We can
also postprocess and delete only the edges that uniquely remove a bad flow.

We have a continuous ranking of the bad flows by weight, but the distinction
between the bad and the good is binary. In the future, exploring other rankings
would allow modeling other domains of congestion problems. Another possibility
one can model is rerouting the disconnected flows, when the tree contains cycles.
We would then need to consider the edge capacities, which were not needed so
far. Another challenge is also avoiding disconnecting the network or at least
minimizing the number of the connected components in the resulting network.

To conclude, we have modeled and approximated two important NP-complete
problems at various topology-dependent complexity levels, providing the basis
for future research.

Acknowledgments. This research is funded by the Dutch Science Foundation project
SARNET (grant no: CYBSEC.14.003/618.001.016)

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discret. Math. 12(3), 289–297 (1999)

2. Bondy, J., Murty, U.: Graph Theory with Applications. Elsevier Science Publishing
Co., Inc., New York (1976)

3. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover prob-
lem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2000, pp. 345–353. Society for Industrial and Applied Mathe-
matics, Philadelphia (2000)

4. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd
edn. MIT Press, Cambridge (2009)

5. Cygan, M., et al.: Parameterized Algorithms, 1st edn. Springer Publishing Com-
pany, Incorporated, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

6. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness I:
basic results. SIAM J. Comput. 24(4), 873–921 (1995). https://doi.org/10.1137/
S0097539792228228

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

8. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

9. Iwata, S., Nagano, K.: Submodular function minimization under covering con-
straints. In: 2009 50th Annual IEEE Symposium on Foundations of Computer
Science, pp. 671–680, October 2009

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1137/S0097539792228228

232 G. Polevoy et al.

10. Khuller, S., Thurimella, R.: Approximation algorithms for graph augmentation. J.
Algorithms 14(2), 214–225 (1993)

11. Koning, R., de Graaff, B., de Laat, C., Meijer, R., Grosso, P.: Interactive analysis
of SDN-driven defence against distributed denial of service attacks. In: 2016 IEEE
NetSoft Conference and Workshops (NetSoft), pp. 483–488, June 2016

12. Miettinen, P.: On the positive-negative partial set cover problem. Inf. Process.
Lett. 108(4), 219–221 (2008)

13. Mirkovic, J., Dietrich, S., Dittrich, D., Reiher, P.: Internet Denial of Service: Attack
and Defense Mechanisms (Radia Perlman Computer Networking and Security).
Prentice Hall PTR, Upper Saddle River (2004)

14. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004)

15. Peleg, D.: Approximation algorithms for the label-covermax and red-blue set cover
problems. J. Discret. Algorithms 5(1), 55–64 (2007)

16. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001). https://doi.
org/10.1007/978-3-662-04565-7

17. Watanabe, T., Ae, T., Nakamura, A.: On the removal of forbidden graphs by edge-
deletion or by edge-contraction. Discret. Appl. Math. 3(2), 151–153 (1981)

18. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp.
253–264. ACM, New York (1978)

19. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor.
15(4), 2046–2069 (2013, Fourth)

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

	Removing Undesirable Flows by Edge Deletion
	1 Introduction
	1.1 Related Work

	2 Model
	3 Equivalence Resulting in Hardness and Approximation
	3.1 BFR
	3.2 BBFR

	4 Approximation
	5 Trees
	5.1 Hardness
	5.2 Approximation
	5.3 Trees with Root-to-Leaf Flows
	5.4 FPT for Trees

	6 Conclusion
	References

