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We model lack of coordination on the same solution and analyse the efficiency repercussions of this lack of coordination.

Example: Lack of Coordination
� Some people are active, while some are not

� Various marriage concepts at the same time

� Different equilibrium flows in a road network

Introduction
Nash equilibrium suffers from
� Strong belief assumptions

� Non-simultaneous change

� Lack of coordination
We model these issues as a transition and bound its efficiency.

Model
1. A game G = (N,S = S1 × S2 × . . . × Sn, ()=1,...,n)
2. A solution concept (e.g., NE) defines a solution set D ⊆ S

Definition 1 Given a game G and D ⊆ S, define a transition
as any profile s = (s1, . . . , sn) ∈ S such that for each  ∈ N, there
exists a solution d(s, ) = (d1, . . . , dn) ∈ D, such that s = d.
Denote the transition set (set of all the transitions) as T(D) ⊆ S.

Definition 2 An m-transition allows for mixing at most m so-
lutions. Denote the m-transition set by T(D,m).

By definition, D ⊆ T(D,m) ⊆ T(D,n) = T(D) and T(T(D)) =
T(D).

For game G = (N,S, ()=1,...,n) and solution
set D ⊆ S,
� SW(s)

Δ
=
∑

∈N (s)

� PoA
Δ
= mins∈D SW(s)

mxs∈S SW(s)
and PoS

Δ
= mxs∈D SW(s)

mxs∈S SW(s)
We define
� PoTA

Δ
= mins∈T(D) SW(s)

mxs∈S SW(s)
and PoTS

Δ
=

mxs∈T(D) SW(s)
mxs∈S SW(s)

� m−PoTA Δ
= mins∈T(D,m) SW(s)

mxs∈S SW(s)
and m−PoTS Δ

=
mxs∈T(D,m) SW(s)
mxs∈S SW(s)

General Efficiency Bounds
For any solution concept, there always holds PoTA ≤ PoA,PoTS ≥ PoS. In the opposite direction, bounds on personal utilities in a
transition imply bounds on the PoTA,PoTS,m − PoTA, and m − PoTS.

In a constant-sum game, PoA = PoS = PoTS =
PoTA = 1.

Theorem 1 In a congestion game with subad-
ditive cost functions, m − PoTA ≤ mPoA, and
this is tight.

A game where the players have equal number
of strategies can be decomposed to a zero-
sum game and a potential game (Candogan
et al. 2011). We connect the efficiency of the
game and its potential part.

Proposition 1 In a 2-player game,
condition
1(, y) ≤ 1(′, y) and 2(, y) ≤
2(, y′) ⇒ SW(, y) ≤
SW(′, y) or SW(, y) ≤ SW(, y′)
implies PoTS = PoS.

We define extensive smoothness,
which allows bounding the PoTA.

Proposition 2 For an identical utility game,
the PoS = PoTS = 1, but the price of anarchy
can be arbitrarily low, and the PoTA can be ar-
bitrarily low relatively to the PoA.
If we also have that the best response strate-
gies of any player  to the strategies s− of
the others do not depend on those s−, then
PoTA = PoA = PoS = PoTS = 1.

1 : 2 :
 : (ε, ε) (0,0)
 : (0,0) (, )

Routing Games
1. Route a commodity of size r from s to t through paths P
2. An equilibrium flow is a feasible flow ƒ where every used

path is optimum with respect to cost ce

3. Define the PoA as the cost of the equilibrium flow
the optimum cost

4. Define a transition as a feasible flow such that ƒP > 0 ⇒
there exists an equilibrium flow ƒ ′ with ƒ ′P > 0

5. Define the PoTA (PoTS) as the cost of a most costly (cheapest) transition
the optimum cost

Example 1 � 1 commodity

� 1 eq. flow and continuum transitions

� PoA = PoS = PoTS = 1, but PoTA = n

c(x) = x

c(x) = x

c(x) = x

s
t

Theorem 2 For cost functions C and a commodity , define

S(C)
Δ
=
mx{|P| : P ∈ P}spc∈C (c(r +

∑

j∈{1,...,k}\{} rj))

min{|P| : P ∈ P} infc∈C c(r/ |P|)
.

Then, PoTA ≤ PoA ·mx=1,...,k S(C), and this bound is tight.

Results and Conclusions
1. Most efficiency bounds are not promising ⇒ coordinate

2. The bounds are optimistic for
� potential game and low transition degree
� identical utility game with independent best responses
� routing with linear and close cost functions, non-intersecting commodities, similar

path lengths, and few paths per commodity


