

Informatics for a complex world

A research focus of the Informatics Institute

Presenter: Cees de Laat

A complex world

- Large numbers of interacting components: agents, cells, sensors, data, processors, machines, users, …
- Emergent behavior: self-organizing and difficult to anticipate from the knowledge of the individual components' behavior
- Collective intelligence: shared or group intelligence that results from the collaboration and competition of many individuals

Informatics for a complex v

A complex world: man-made and natural

Man-made

- □ Cities, Countries, Continents
- Transportation and communication systems
- Internet, Google, Wikipedia, YouTube, Twitter, FaceBook, Linked Open Data cloud, ...

Informatics for a complex world

Socio-economic systems

Natural

- The immune system
- Biological networks
- Climate, weather, earthquakes

I4CW: Aims

- To understand the behavior of man-made and natural systems in a complex world from the behavior of, and interactions between their components
- Deeply embedded in informatics theoretical, methodological and experimental tradition
- Strongly connected to cross disciplinary and societal links

Informatics for a complex w

Research Questions

- What is information?
- What algorithms allow understanding, predicting and controlling information?
- Can we unravel the complexity by computational modeling and simulation?
- Can computers autonomously extract information from data?
- How do people search and use information?
- What is decision making?
- Can we understand and control sustainable data processing environments robustly?
- How to protect the data of an individual, her corresponding integrity and identity, living in a complex digital world?

Informatics for a complex world

6

"Friendship as a health factor" Spread of obesities, smoking, or happiness as a social virus

Picture from Science 23 January 2009: Vol. 323 no. 5913 pp. 454-457

Recent papers suggest that aspects of health, such as obesities, smoking, or happiness spread over networks:

- 1. The Spread of Obesity in a Large Social Network over 32 Years, Nicholas A. Christakis and James H. Fowler, N Engl J Med 2007; 357:370-379
- 2. The Collective Dynamics of Smoking in a Large Social Network, Nicholas A. Christakis and James H. Fowler, N Engl J Med 2008; 358:2249-2258
- Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study, Fowler, J. H. & Christiakis, N. A. 2008. BMJ, 337.

University of Amsterdam

Data

I4CW Approach

- Mine existing cohorts studies or scientific literature
- From social media

 Through serious online games, like degrotegriepmeting.nl

Collect data from system under investigation

Network analysis

- Machine learning approaches
- Extract parameters for models

Infer meaning from collected data

ollect data from system under investigation

- Agent based models on social friendship networks
- Spreading of 'social viruses' on such networks
- Infection by a 'social virus' on such networks

Yifan Zhu, Weiping Wang, Mathematics and Computers in Simulation 80, 1018-1030, 2010

- Decision support using the whole **I4CW** chain
- Influence the epidemic by acting on the social network

ETTER

doi:10.1038/nature11421

A 61-million-person experiment in social influence and political mobilization

Robert M. Bond¹, Christopher J. Fariss¹, Jason J. Jones², Adam D. I. Kramer³, Cameron Marlow³, Jaime E. Settle¹ & James H. Fowler^{1,4}

Human behaviour is thought to spread through face-to-face social with all users of at least 18 years of networks, but it is difficult to identify social influence effects in observational studies⁹⁻¹³, and it is unknown whether online social US congressional elections. Users were networks operate in the same way^{14–19}. Here we report results from a randomized controlled trial of political mobilization messages The social message group (n = 60,055,

accessed the Facebook website on 2 N message' group, an 'informational mess

Collect data from system und

Questionnaires

IJkdijk - UrbanFlood

UrbanFlood creates an internet based hosting platform for early warning systems ... just connect your sensors to the internet ...

I4CW: Starting strengths

- Systems and Network Engineering (De Laat, Grosso)
 Complex cyber infrastructure spanning continents
 Secure, sustainable, robust, collective behavior and control
- Computer Systems Architecture (Pimentel)
 system-level design methods and techniques microgrids
 general-purpose computing platforms
- Intelligent Systems Lab Amsterdam (De Rijke, Welling)
 Semantic analytics for textual, visual, social, sensory data
 Search, classify, recommend, predict at very large scale
- Section Computational Science (Sloot, Hoekstra)
 - $\hfill\square$ Theory of complex systems
 - Model and simulate complex systems
- Federated Collaborative Networks (Afsamanesh, Bergstra)
 - Ontology engineering, trust management
 - Creation, operation, and management of VOs.

Computational Science

I4CW: Dots on the horizon

- Sustainable robust secure Future Internet
 Smart Cyber Infrastructure using semantic approach
 Protect the integrity of the human in digital world
- Self-learning interpretation of complex data streams
 - Unsupervised, real-time
 - Complement with cognitive signals
- Information theory of complex systems
 - Is multi-scale an emergent aspect of Complex Systems?
 - □ Can we predict and control Complex System Behaviour?

Take Away Message: A-A-A

Analyze

Kunnen we onze informatiesystemen nog beheersen? Ref: De nederlandse Wetenschapsagenda.

