
Mastering Complex Cyber Infrastructure���
Cees de Laat

EU	

COMMIT	

UvA	

NWO	

PID/EFRO	

SURFnet	

TNO	

TI	

NCF	

Science Faculty
@ UvA ���

���
Informatics Institute	

•  CSA: Computer Systems Architecture (dr. A.D. Pimentel)	

•  FCN: Federated Collaborative Networks (Prof. dr. H. Afsarmanesh)	

•  IAS: Intelligent Autonomous Systems (Prof. dr. ir. F.C.A. Groen)	

•  ILPS: Information and Language Processing Systems (Prof. dr. M. de Rijke)	

•  ISIS: Intelligent Sensory Information Systems (Prof. dr. ir. A.W.M. Smeulders)	

•  SCS: Section Computational Science (Prof. dr. P.M.A. Sloot)	

•  SNE: System and Network Engineering (Prof. dr. ir. C.T.A.M. de Laat)	

•  TCS: Theory of Computer Science (Prof. dr. J.A. Bergstra)	

Internet���
developments	

… more users!

… more data!

… more realtime!

Internet���
developments	

… more users!

… more data!

… more realtime!

Speed	

Volume	

Deterministic	

Real-time	

Scalable	

Secure	

GLIF 2011	

 Visualization courtesy of Bob Patterson, NCSA
Data collection by Maxine Brown.

We investigate: for	

complex networks!	

The GLIF – lightpaths around the world

In	
 the	
 Intercloud	
 virtual	
 servers	
 and	
 networks	
 become	
 so5ware	

•  Virtual	
 Internets	
 adapt	
 to	
 the	

environment,	
 grow	
 to	
 demand,	
 iterate	

to	
 specific	
 designs	

•  Network	
 support	
 for	
 applica=on	

specific	
 interconnec=ons	
 are	
 merely	

opi=miza=ons:	
 Openflow,	
 ac=ve	

networks,	
 cisco	
 distributed	
 switch	

•  But	
 how	
 to	
 control	
 the	
 control	
 loop?	

stable, optimized state), which are described by the reference. To implement changes
in the network, the control application translates decisions into instructions, such as
create, forward or drop packets specific to each NE involved in the application. This
means that the system needs to provide a distributed transaction monitor to keep
network manipulations that involve multiple NE consistent.

Fig. 2. The application framework to control networks contains a control loop.

In control theory, a measurement (AC Properties) from the system is subtracted
from a reference value, which leads to an error value as input for the control
application. In our framework, the measurements (AC Properties) that represent
network state may use different metrics compared to the controlled state (AC
Actions). For example, a controller may manipulate edge weights in shortest path
routing based on throughput information. Such a scenario is meaningful if the relation
between throughput and edge weights (!) is known or can be learnt and would be
useful to dynamically distribute traffic to avoid congestion, for example [34].

Applications exchange information (NCx,y) with NEs over a communication
network, possibly over the same network the application is controlling (in-band).
Even though application developers may have access to a separate management
network, the communication path between network and application complicates the
design and validation of the controller. Network properties, such as latency and
packet loss, limit the amount of information that can be exchanged or synchronized.
So, NE state information can become incomplete, inaccurate or aged. The application
developer has to understand the limits in information exchange of a given network,
i.e. observability, when designing the control application.

This section introduced the abstractions needed to provide the basic framework for
network control in the application domain. Next, the details related to interworking of
applications and networks that lead to a functional model are described.

4 Functional Components

The OSI reference model organizes the interworking of applications and networks in
seven layers [36]. The design principle of layering allows decomposition of a
complex problem, but application specific details may be lost in the process. If
network elements are virtualized in software, the application interface to the software
(NCs) can be fine-tuned to the specific problem domain. However, the fine-tuning

tion domain is that developers can use existing software,
such as libraries or other applications developed by do-
main experts. The assumption is that applications know
what network service is required and that applications
can implement the mechanisms to find the optimum net-
work service. We focus on the latter approach with this
assumption in mind.

Model

Controller

AC

Actions

AC

Properties

Reference

NE

Application

NC
x

NC
y

�

Figure 2: A closed-loop control model between applica-
tion and network.

An application has to collect (incomplete) network in-
formation, calculate an optimum network configuration
and adjust the network to reach the optimal adaptation
of network service (Figure 2). The application devel-
oper chooses application specific abstractions, such as
interactive visualization for a human controller (figure 3)
or existing domain-specific software as controller (fig-
ure 4), to update an internal network model (NC

x

) and
to manipulate network state (NC

y

). The internal net-
work model is updated by combining state information
from all or a subset of NEs (NC

x

). In principle, the
internal network model can also take into account non-
network related information, such as computing or host-
ing costs, energy usage and service level agreements.

A controller applies an optimizer or other algorithm
to find the actions (NC

y

) needed to adjust the network
behavior in such a way that it matches the application
needs (e.g. a stable, optimized state), which are de-
scribed by the reference. While state information, such
as neighbors, throughput and latency, from a collection
of NEs combine into global network state, actions to im-
pact network state need to translate into actions, such
as create, forward or drop a packet, specific to each
NE involved in the application. This means that actions
that involve multiple NE benefit from using a distributed
transaction monitor to keep network manipulations con-
sistent.

In control theory, the sensor (AC Properties) subtracts
the measurement from the reference value, which leads
to an error value as input for the controller. In our model,
however, the measurements (AC properties) that de-
scribe network state do not have to match the controlled

state (AC Actions). For example, a controller may ma-
nipulate edge weights in shortest path routing based on
throughput information. Such a scenario is meaningful
if the relation between throughput and edge weights (�)
is known or can be learnt. This example would be useful
for load balancing or routing traffic around undesirable
NEs.

4 Implications of the control loop
When discussing the implications of the control loop,
one should be aware that the complexity of the applica-
tion depends on the network environment. Depending
on the type of application, the AC properties and actions
are at the edges, e.g. do not control routers and switches,
in the data plane or in the control plane of the network.
The following classification of applications follows from
the location of application in the network environment:

Applications that integrate a network service im-
plement alternative addressing, routing or security,
which is optimal to the application. Such applications
have no control over the intermediate network, but form
an overlay of new network functions that map to the in-
terfaces of the underlay.

Applications that are the network service offer al-
ternative network interfaces to other applications, such
as MPLS or openflow [5, 18]. By implementing tech-
nologies in the network other applications have better
control over service levels. The network should support
traffic isolation and application management, i.e. oper-
ating system concepts, to support multiple applications.

Applications that manage a network service use the
hooks or configurable parameters of a network service to
optimize the workings of a network service. In existing
network management systems, the functions are exposed
to the network operator [19] in a centralized system. In
a centralized system, it is straightforward to create an
environment that enables applications to control network
services [20]. We look at the implementation of a typical
application.

4.1 Network model in the application
Any application that implements a controller operates
on a network model, which must be updated by NC

x

events or polling. An AC property getNeighor is enough
to discover the network topology from a controller, for
example with a depth-first search. The information is
then translated into an application-specific data struc-
ture, such as a graph model in Mathematica [21]. With
access to throughput (resulting in thptNetwork figure 4)
router configuration, it is trivial to develop a controller
that load balances router traffic by manipulating their
edge weights. This approach shows that developers can
write advanced, yet straightforward controllers using ex-
isting software.

Complex	
 e-­‐Infrastructure!	

Complex	
 e-­‐Infrastructure!	

Complex	
 e-­‐Infrastructure!	

Why?	

I	
 want	
 to:	

“Show	
 Big	
 Bug	
 Bunny	
 in	
 4K	
 on	
 my	
 Tiled	
 Display	
 using	

green	
 Infrastructure”	

	

Why?	

I	
 want	
 to:	

“Show	
 Big	
 Bug	
 Bunny	
 in	
 4K	
 on	
 my	
 Tiled	
 Display	
 using	

green	
 Infrastructure”	

	

Why?	

I	
 want	
 to:	

“Show	
 Big	
 Bug	
 Bunny	
 in	
 4K	
 on	
 my	
 Tiled	
 Display	
 using	

green	
 Infrastructure”	

	

•  Big	
 Bugs	
 Bunny	
 can	
 be	
 on	
 mul=ple	
 servers	
 on	
 the	
 Internet.	

•  Movie	
 may	
 need	
 processing	
 /	
 recoding	
 to	
 get	
 to	
 4K	
 for	
 Tiled	
 Display.	

•  Needs	
 determinis=c	
 Green	
 infrastructure	
 for	
 Quality	
 of	
 Experience.	

•  Consumer	
 /	
 Scien=st	
 does	
 not	
 want	
 to	
 know	
 the	
 underlying	
 details.	

è	
 	
 His	
 refrigerator	
 also	
 just	
 works.	

The	
 Ten	
 Problems	
 with	
 the	
 Internet	

1.   Energy	
 Efficient	
 Communica3on	

2.  Separa=on	
 of	
 Iden=ty	
 and	
 Address	

3.  Loca=on	
 Awareness	

4.   Explicit	
 Support	
 for	
 Client-­‐Server	
 Traffic	
 and	
 Distributed	
 Services	

5.  Person-­‐to-­‐Person	
 Communica=on	

6.  Security	

7.   Control,	
 Management,	
 and	
 Data	
 Plane	
 separa3on	

8.   Isola3on	

9.  Symmetric/Asymmetric	
 Protocols	

10.   Quality	
 of	
 Service	

Nice	
 to	
 have:	

•  Global	
 Rou=ng	
 with	
 Local	
 Control	
 of	
 Naming	
 and	
 Addressing	

•  Real	
 Time	
 Services	

•  Cross-­‐Layer	
 Communica3on	

•  Manycast	

•  Receiver	
 Control	

•  Support	
 for	
 Data	
 Aggrega=on	
 and	
 Transforma=on	

•  Support	
 for	
 Streaming	
 Data	

•  Virtualiza3on	

ref:	
 Raj	
 Jain,	
 "Internet	
 3.0:	
 Ten	
 Problems	
 with	
 Current	
 Internet	
 Architecture	
 and	
 Solu=ons	
 for	
 the	
 Next	
 Genera=on",	
 	

Military	
 Communica=ons	
 Conference,	
 2006.	
 MILCOM	
 2006.	
 IEEE	

TimeLine	

1980	
 2011	
 2000	
 1990	
 2005	

TCP	

RDUDP,	
 SCTCP,	
 …	

ATM	
 (G)MPLS	
 SONET/SDH	
 OpenFlow	
 PBT/PLSB	

NDL	
 SF	
 for	
 complex	
 nets	

SF	
 for	
 Clouds	

SF	
 for	
 CineGrid	
 CineGrid	

GreenIT&Nets	

LightPaths	
 -­‐	
 GLIF	
 Hybrid	
 Nets	

AAA	
 TBN	
 Policy	

Programmable	
 Networks	
 NetApp’s	

NM	
 	
 	
 	
 	
 	
 	
 OCCI	
 	
 	
 	
 	
 	
 	
 	
 	
 NSI	
 	
 	
 	
 	
 	
 	
 	
 	

TCP	
 Reno,	
 Vegas	

TimeLine	

2020	

Cogni3ve	
 Nets	
 and	
 clouds	

Sustainable	
 Internet	

Virtualized	
 Internet	

Machine	
 Learning	
 	
 +	
 “I	
 Want”	

Internet	
 3.0	

Good	
 Old	
 Trucking	

1980	
 2011	
 2000	
 1990	
 2005	

TCP	

RDUDP,	
 SCTCP,	
 …	

ATM	
 (G)MPLS	
 SONET/SDH	
 OpenFlow	
 PBT/PLSB	

NDL	
 SF	
 for	
 complex	
 nets	

SF	
 for	
 Clouds	

SF	
 for	
 CineGrid	
 CineGrid	

GreenIT&Nets	

LightPaths	
 -­‐	
 GLIF	
 Hybrid	
 Nets	

AAA	
 TBN	
 Policy	

Programmable	
 Networks	
 NetApp’s	

NM	
 	
 	
 	
 	
 	
 	
 OCCI	
 	
 	
 	
 	
 	
 	
 	
 	
 NSI	
 	
 	
 	
 	
 	
 	
 	
 	

TimeLine	

2020	

Cogni3ve	
 Nets	
 and	
 clouds	

Sustainable	
 Internet	

Virtualized	
 Internet	

Machine	
 Learning	
 	
 +	
 “I	
 Want”	

Internet	
 3.0	

Good	
 Old	
 Trucking	

1980	
 2011	
 2000	
 1990	
 2005	

TCP	

RDUDP,	
 SCTCP,	
 …	

ATM	
 (G)MPLS	
 SONET/SDH	
 OpenFlow	
 PBT/PLSB	

NDL	
 SF	
 for	
 complex	
 nets	

SF	
 for	
 Clouds	

SF	
 for	
 CineGrid	
 CineGrid	

GreenIT&Nets	

LightPaths	
 -­‐	
 GLIF	
 Hybrid	
 Nets	

AAA	
 TBN	
 Policy	

Programmable	
 Networks	
 NetApp’s	

NM	
 	
 	
 	
 	
 	
 	
 OCCI	
 	
 	
 	
 	
 	
 	
 	
 	
 NSI	
 	
 	
 	
 	
 	
 	
 	
 	

2040	

I	

re3re	

Cloud	

Compu=ng	

Service	
 Plane	

eScience	
 Middleware	

	

	
 SAGE	

CGLX	

Cromium	

	
 SAGE	
 	
 WebServ	
 	
 OGSA	
 	
 DIAS	

ByteIO	

PerfSonar	
 NSI
	
 NetConf	

SNMP	

OpenFlow	

	
 GIR	

UR	

	
 OCCI	

JSDL	

SAGA	

DIAS	

ByteIO	

	
 iRODs	

Domain	

Apps	

	

Domain	

Apps	

	

Domain	

Apps	

	

Domain	

Apps	

	

+	
 ML	
 +	
 reasoning	
 (ProLog?)	
 +	
 Scheduling	
 +	
 …	

…	
 	
 	
 …	

Monitoring	

RDF	
 Seman3c	

descrip3ons	

Context	

informa3on	

Logging	

History	

Policy	

APP	

Feedback	

I	
 Want	

….	

Cloud	

Compu=ng	

Graph	
 Theory	

Machine	

Learning	

Sustainability	

Hybrid Networking <-> Computing	

Routers 	

 	

 	

ç è 	

Supercomputers	

	

Ethernet switches 	

ç è 	

Grid & Cloud	

	

Photonic transport 	

ç è 	

GPU’s	

	

What matters:	

	

Energy consumption/multiplication	

	

Energy consumption/bit transported	

	

Challenges	

•  Data – Data – Data	

–  Archiving, publication, searchable, transport, self-describing, DB
innovations needed, multi disciplinary use	

•  Virtualisation	

–  Another layer of indeterminism	

•  Greening the Infrastructure	

–  e.g. Department Of Less Energy: http://www.ecrinitiative.org/pdfs/ECR_3_0_1.pdf	

•  Disruptive developments	

–  BufferBloath, Revisiting TCP, influence of SSD’s & GPU’s	

–  Multi layer Glif Open Exchange model	

–  Invariants in LightPaths (been there done that J)	

•  X25, ATM, SONET/SDH, Lambda’s, MPLS-TE, VLAN’s, PBT, OpenFlow, ….	

–  Authorization & Trust & Security and Privacy	

Data Centers	

The Way Forward!	

•  Nowadays scientific computing and data is dwarfed by commercial &

cloud, there is also no scientific water, scientific power.	

•  Understand how to work with elastic clouds	

•  Trust & Policy & Firewalling on VM/Cloud level	

•  Technology cycles are 3 – 5 year	

•  Do not try to unify but prepare for diversity	

•  Hybrid computing & networking	

•  Compete on implementation & agree on interfaces and protocols	

•  Limitation on natural resources and disruptive events	

•  Energy becomes big issue	

•  Follow the sun	

•  Avoid single points of failure (aka Amazon, Blackberry, …)	

•  Better very loosly coupled than totally unified integrated…	

ECO-Scheduling	

Q & A http://ext.delaat.net/	

Slides thanks to:	

•  Paola Grosso	

•  Sponsors see slide 1. J	

•  SNE Team & friends, see below	

	

