Visualization

Pire Workshop 2014 University of Amsterdam

NAVAL POSTGRADUATE SCHOOL I University Circle • Monterey, Calif. 93943 (831) 656-1068 • pao@nps.edu • www.nps.edu

111

के ते ते ते ते ते

🗣 NAVAL FOSTGRADUALL SCHOOL

NPS is a graduate-level research university, applying academic rigor to a defined niche.

- Responds to joint, interagency, emerging needs and coalition requirements of the Departments of Navy, Defense, Homeland Security and more
- Defends the nation, leading and transforming the DOD
- Fosters a multi-service, interagency, coalition learning environment
- Prepares the joint intellectual leaders for tomorrow's joint forces

FLAVAL FOSTGRADUATESCHOOT.

NPS fulfills the graduate education needs of the Department of Defense.

- Master's Degrees, Ph.D., Engineer, MBA, EMBA, more
- Accelerated, defense-focused degree programs unique in academia
- Interdisciplinary, relevant, agile from expressed need to delivered program with an extremely quick turnaround.
- Biennial program reviews by flag-level sponsors

The Graduate School of Engineering and Applied Sciences develops leading-edge technological advancements with strict applications to DOD's needs.

- Applied Mathematics
- Combat Systems Science and Technology
- Electronic Systems Engineering (resident and DL)
- Mechanical and Aerospace Engineering
- Mechanical Engineering for Nuclear Trained Officers (DL)
- Meteorology and Oceanography
- Meteorology
- Oceanography
- Operational Oceanography

- Reactors/Mechanical Engineering
- Space Systems Engineering
- Space Systems Operations (with GSOIS) (resident and DL)
- Systems Engineering (resident & DL)
- Systems Engineering Management (DL)
- Undersea Warfare (domestic and international)
- Underwater Acoustic Systems (DL)

NAVAL POSTGRADUATE SCHOOL

The Graduate School of Operational and Information Sciences is the Navy's path to Information Dominance.

- Computer Science (Res & DL)
- Computer Technology (DL)
- Cost Estimating & Analysis (DL)
- Electronic Warfare Systems
- Human Systems Integration
- Identity Management and Cyber Security (Resident & DL)
- Information Sciences
- Information Systems & Operations
- Information Systems & Technology
- Information Warfare
- Joint C4I Systems

- Joint Information Operations
- Joint Operational Logistics
- Modeling, Virtual Environments, and Simulation
- Operations Analysis
- Remote Sensing
- Software Engineering (Resident & DL)
- Special Operations
- Systems Analysis (DL)

Motivation

Given that we live in an era where data are ubiquitous, our ability to process them, understand them, visualize them and to use these data effectively is a complimentary SCARCE resource.

Enabling Knowledge Accidents

Proper Preprocessing with Careful Filtering Meaningful Representations Appropriate Media Intelligent Interactivity Validity

What is Visualization?

a few key meanings...

Visualization is any technique for creating images, diagrams or animations to communicate a message.

Visualization today has ever-expanding applications in science, education, engineering (e.g., product visualization), interactive multimedia (games), medicine

Scientific visualization

Information visualization

Software visualization

from http://en.wikipedia.org/wiki/Visualization

"Overview first, zoom and filter, details on demand"

Ceci n'est pas une pipe.

Things to Remember

- All models are wrong, some are useful
- Simulation is doomed to success
- When no one has to ask what it means, the representation is correct
- The more money spent on a simulation, the less likely it is to work

Information Channels in Visualization

2D vs 3D Vector Field

UTC Time: 2011-03-09 19:10:59 Local Time: 2011-03-09 11:10:59

Click for map of all SCCOOS observations

Available Products ASBS Data Automated Shore Stations Bathymetry Gliders Harbors Harmful Algae & Red Tides Manual Shore Stations Meteorological Observations Moorings Plume Tracking **ROMS Model Output** Recent Model Runs Virtual Moorings **Drifter Trajectory** Satellite Imagery

Satellite Imagery Ship Tracking (AIS) Ship Casts Surface Current Mapping Wave Conditions (CDIP)

Regional Ocean Model System (ROMS) Model Output

The <u>ROMS model is produced and distributed</u> by <u>NASA JPL</u> and is available from <u>http://ourocean.jpl.nasa.gov/SCB/</u>.

Regional Ocean Model Simulation

Vector Fields

Image courtesy of NCSA

Steve Duenes, NY Times

8K Telemecine - Remote Collaborative High-resolution Dermatology Exam at 8K

Naval Postgraduate School, MOVES Institute

Decklink Media

Capture Station

NPS SAGE OptIPortal (6x1K)

Digital Video as "Big Data"

Challenges associated with Video

Video is about x30-60 harder than still imagery

But motion provides some interesting possibilities

Just like Everybody's Dog is Special

Everybody's Data is Big

My Data is Really Big

- 60fps 24-bit HD Video 2.98 Gbit/s
- 60fps 24-bit 4K Video 11.92 Gbit/s
- 60fps 48-bit 4K Video 23.94 Gbit/s
- 30fps 24-bit 8K Video 47.69 Gbit/s
- 60fps 24-bit 8K Video 95.38 Gbit/s
- (Theoretical) 60fps 48-bit 8K Video 190.76 Gbit/s

5 minute 4K Movie

- 18,000 Frames
- Each Frame = 48MB (16-bit TIFF)
- Total Size ~0.86TB

5 minute 8K Movie

- 18,000 Frames
- Each Frame = I92MB (I6-bit TIFF)
- Total Size ~3.44TB

Metadata

- Metadata is often decoupled from Content
- Deriving Metadata can be difficult
- Many containers vary in their capacity to carry Metadata

Meaning

- Classification is often metadata dependent
- Deriving Semantics is difficult
- Video Analysis is very difficult
- Feature Extraction and other analytical methods can be computationally costly

Sampling of SIGGRAPH 2014 Technical Papers Related to Video Analysis

Near-Regular Structure Extraction Using Linear Programming

Introducing a linear programming formulation for detecting near-regular structures and demonstration of applications in structure-preserving pattern manipulation and markerless correspondence detection.

Relating Shapes Via Geometric Symmetries and Regularities

This paper examines the usage of symmetry relations for matching shapes of strongly varying geometry and shows that symmetry-based cues can help in finding correspondences in pairs of shapes that are very hard to relate with previous, geometry-based methods.

Shape2Pose: Human-Centric Shape Analysis

This algorithm for estimating the pose that a person typically would adopt when interacting with an object is used to assist several shape-analysis applications.

Mesh Saliency Via Spectral Processing

A novel method for detecting mesh saliency, a perceptually based measure of regional importance by analysing a mesh in the spectral domain.

Inverse Procedural Modeling of Façade Layouts

This paper addresses the following open research problem: How to generate a deterministic shape grammar to explain a given façade layout? The proposed solution contributes to compression of urban models, architectural analysis, and generation of shape grammars for large-scale urban modeling.

Preservation of Digital Video Materials

LE DIGITAL DILEMANA

THE DIGITAL DILEMI

- Digital Migration is broken because of various factors
- Format changes every 3-5 years
- Media changes every 3-5 years
- Unlike film, digital video is inscrutable
- Minor corruption can be catastrophic
- Normal data integrity checks impossible

Questions?

jdweekley (at) <u>nps.edu</u> Twitter @jdweekley

Thank you

Dr. Bob Grossman, University of Chicago Dr. Heidi Alvarez, Florida International University Dr. Paola Grosso, University of Amsterdam NSF PIRE Summer Fellows 2014