
Motivation

Background

Distributed Processing of Workflow Applications

Using the Storm Framework

Storm

Workflow Application: Lavatube

Mapping the Application’s Workflow onto Storm

Example Mapping From Lavatube to Storm

Lavatube UI:

- Users create workflows

using HTML5 based GUI

- XML doc is generated

which is passed to next

layer

Integration layer:

- Parses the XML and

separates it into multiple

sub-workflows

- Analyzes the workflow’s

structure and uses it to

build a Storm topology

research

edinburgh

data-intensive

Name: Joseph Korpela
University: UCLA
Adviser: Isao Kojima
Organization: AIST

Lavatube is a visual programming framework used for

computer vision research:

- Provides a graphical interface through which users

piece together complex video and image

processing workflows

- Provides a large library of editing functions which

can be combined to perform complex operations,

such as anomalous behavior detection systems

- Maximizes its use of multi-core systems with a

design optimized for parallel processing

Storm is a distributed computation framework that is

based on a streaming data model:

- Spreads complex topologies across a computer

cluster, making it possible to run the topologies

on torrents of data that would drown a single

computer

- Uses efficient message passing to allow it to

push as much as 1,000,000 messages per

second per node

- Does this in a robust manner, with the ability to

automatically detect and recover from failed

nodes, assign new nodes, and redistribute tasks

dynamically

Cluster Nodes

Storm

Integration
Layer

LavaTube UI Builds
Workflow

Translates
Workflow to

Topology

Maps
Topology to

Cluster

Runs
Lavatube

Runs
Lavatube

Runs
Lavatube

Storm:

- Initializes the cluster, assigning sections of the workflow to various nodes

- Manages the messages passed between nodes

Nodes:

- Each runs its own instance of Lavatube locally, initialized using the sub-workflow XML doc

received during Storm initialization

- Image frames arrive via Storm, are processed by the local sub-workflow, and then are sent

out to consuming sub-workflows via Storm

Spout
Bolt

Bolt

Bolt

Bolt

Bolt

Bolt

Bolt

Bolt

Bolt

Storm Topologies:

Spouts: Produce tuples of data

Bolts: Analyze, filter, transform, and

store that data

Original Workflow (Lavatube Face detection algorithm):

Mapping of the above Lavatube face detection workflow to a Storm

cluster:

1) Task Parallelism is inherent to Storm’s distribution of sub-workflows across the cluster

2) Data Parallelism involves duplicating sub-workflows and processing subsets of the video stream

on the separate duplicated nodes

Two Dimensions of Parallel Processing

- Utilize Storm to automate allocation of nodes when

distributing workflow applications across a

computer cluster

- Minimize modification of the original workflow

 application to simplify parallelization

- Leverage Storm’s inherent scalability to allow the

 workflow application to scale automatically with

 the underlying cluster

Frames are distributed to the

duplicated nodes using a modular

division based batching method:

- Resolves issues with

synchronizing the frames of

merging video streams that arrive

as input to parallelized

components

- Maintains a partial ordering in the

frames, reducing the burden on

components which later need the

frames to be in order

Macro Block based Data Parallelization (even splitting and

merging can be accomplished in parallel, with only frame

reordering requiring a non-parallelized component)

Research Results

Successfully validated this model using actual video data.

- Tested on grid of five computers using 16 Storm worker processes

- Input two video files, performed multiple transformations, including

parallelized merge of video streams

- Output AVI file 100% identical to non-distributed processing

The above example demonstrates both data and task parallelism:

- Data Parallelism: IPPI.Color.ToGray and IPPI.Geometric.Mirror

functions are each duplicated on three nodes each, with each

duplicate processing a subset of the original video stream

- Task Parallelism: Separate worker nodes are used to process

sequential functions, such as with DirectShow.Capture being

processed on a separate worker node from IPPI.Color.ToGray

*Further data parallelism can also be

achieved by splitting individual video

frames into macro blocks, allowing

large frames, such as with 4K Ultra

HD, to be processed in parallel

Tested performance of Storm infrastructure when supporting larger

volumes of video data:

- Ran input in infinite loops to observe performance bottlenecks

- Primary bottleneck found to be computationally expensive Lavatube

functions, such as the geometric resize function

- Indicates capability of the combined framework to increase the

processing capacity of Lavatube for such functions by using data

parallelism to spread computation across multiple nodes

